ﻻ يوجد ملخص باللغة العربية
It was discovered some years ago that there exist non-integer real numbers $q>1$ for which only one sequence $(c_i)$ of integers $c_i in [0,q)$ satisfies the equality $sum_{i=1}^infty c_iq^{-i}=1$. The set of such univoque numbers has a rich topological structure, and its study revealed a number of unexpected connections with measure theory, fractals, ergodic theory and Diophantine approximation. In this paper we consider for each fixed $q>1$ the set $mathcal{U}_q$ of real numbers $x$ having a unique representation of the form $sum_{i=1}^infty c_iq^{-i}=x$ with integers $c_i$ belonging to $[0,q)$. We carry out a detailed topological study of these sets. For instance, we characterize their closures, and we determine those bases $q$ for which $mathcal{U}_q$ is closed or even a Cantor set. We also study the set $mathcal{U}_q$ consisting of all sequences $(c_i)$ of integers $c_i in [0,q)$ such that $sum_{i=1}^{infty} c_i q^{-i} in mathcal{U}_q$. We determine the numbers $r >1$ for which the map $q mapsto mathcal{U}_q$ (defined on $(1, infty)$) is constant in a neighborhood of $r$ and the numbers $q >1$ for which $mathcal{U}_q$ is a subshift or a subshift of finite type.
We develop further the theory of $q$-deformations of real numbers introduced by Morier-Genoud and Ovsienko, and focus in particular on the class of real quadratic irrationals. Our key tool is a $q$-deformation of the modular group $PSL_q(2,mathbb{Z})
A folklore conjecture in number theory states that the only integers whose expansions in base $3,4$ and $5$ contain solely binary digits are $0, 1$ and $82000$. In this paper, we present the first progress on this conjecture. Furthermore, we investig
A beta expansion is the analogue of the base 10 representation of a real number, where the base may be a non-integer. Although the greedy beta expansion of 1 using a non-integer base is in general infinitely long and non-repeating, it is known that i
Let $M$ be a positive integer and $qin (1, M+1]$. A $q$-expansion of a real number $x$ is a sequence $(c_i)=c_1c_2cdots$ with $c_iin {0,1,ldots, M}$ such that $x=sum_{i=1}^{infty}c_iq^{-i}$. In this paper we study the set $mathcal{U}_q^j$ consisting
The Apery numbers $A_n$ and the Franel numbers $f_n$ are defined by $$A_n=sum_{k=0}^{n}{binom{n+k}{2k}}^2{binom{2k}{k}}^2 {rm and } f_n=sum_{k=0}^{n}{binom{n}{k}}^3(n=0, 1, cdots,).$$ In this paper, we prove three supercongruences for Apery