ترغب بنشر مسار تعليمي؟ اضغط هنا

Unique expansions of real numbers

105   0   0.0 ( 0 )
 نشر من قبل Vilmos Komornik
 تاريخ النشر 2006
  مجال البحث
والبحث باللغة English
 تأليف Martijn de Vries




اسأل ChatGPT حول البحث

It was discovered some years ago that there exist non-integer real numbers $q>1$ for which only one sequence $(c_i)$ of integers $c_i in [0,q)$ satisfies the equality $sum_{i=1}^infty c_iq^{-i}=1$. The set of such univoque numbers has a rich topological structure, and its study revealed a number of unexpected connections with measure theory, fractals, ergodic theory and Diophantine approximation. In this paper we consider for each fixed $q>1$ the set $mathcal{U}_q$ of real numbers $x$ having a unique representation of the form $sum_{i=1}^infty c_iq^{-i}=x$ with integers $c_i$ belonging to $[0,q)$. We carry out a detailed topological study of these sets. For instance, we characterize their closures, and we determine those bases $q$ for which $mathcal{U}_q$ is closed or even a Cantor set. We also study the set $mathcal{U}_q$ consisting of all sequences $(c_i)$ of integers $c_i in [0,q)$ such that $sum_{i=1}^{infty} c_i q^{-i} in mathcal{U}_q$. We determine the numbers $r >1$ for which the map $q mapsto mathcal{U}_q$ (defined on $(1, infty)$) is constant in a neighborhood of $r$ and the numbers $q >1$ for which $mathcal{U}_q$ is a subshift or a subshift of finite type.



قيم البحث

اقرأ أيضاً

We develop further the theory of $q$-deformations of real numbers introduced by Morier-Genoud and Ovsienko, and focus in particular on the class of real quadratic irrationals. Our key tool is a $q$-deformation of the modular group $PSL_q(2,mathbb{Z}) $. The action of the modular group by Mobius transformations commutes with the $q$-deformations. We prove that the traces of the elements of $PSL_q(2,mathbb{Z})$ are palindromic polynomials with positive coefficients. These traces appear in the explicit expressions of the $q$-deformed quadratic irrationals.
100 - Stuart A. Burrell , Han Yu 2019
A folklore conjecture in number theory states that the only integers whose expansions in base $3,4$ and $5$ contain solely binary digits are $0, 1$ and $82000$. In this paper, we present the first progress on this conjecture. Furthermore, we investig ate the density of the integers containing only binary digits in their base $3$ or $4$ expansion, whereon an exciting transition in behaviour is observed. Our methods shed light on the reasons for this, and relate to several well-known questions, such as Grahams problem and a related conjecture of Pomerance. Finally, we generalise this setting and prove that the set of numbers in $[0, 1]$ who do not contain some digit in their $b$-expansion for all $b geq 3$ has zero Hausdorff dimension.
240 - Maysum Panju 2011
A beta expansion is the analogue of the base 10 representation of a real number, where the base may be a non-integer. Although the greedy beta expansion of 1 using a non-integer base is in general infinitely long and non-repeating, it is known that i f the base is a Pisot number, then this expansion will always be finite or periodic. Some work has been done to learn more about these expansions, but in general these expansions were not explicitly known. In this paper, we present a complete list of the greedy beta expansions of 1 where the base is any regular Pisot number less than 2, revealing a variety of remarkable patterns. We also answer a conjecture of Boyds regarding cyclotomic co-factors for greedy expansions.
62 - Simon Baker , Yuru Zou 2021
Let $M$ be a positive integer and $qin (1, M+1]$. A $q$-expansion of a real number $x$ is a sequence $(c_i)=c_1c_2cdots$ with $c_iin {0,1,ldots, M}$ such that $x=sum_{i=1}^{infty}c_iq^{-i}$. In this paper we study the set $mathcal{U}_q^j$ consisting of those real numbers having exactly $j$ $q$-expansions. Our main result is that for Lebesgue almost every $qin (q_{KL}, M+1), $ we have $$dim_{H}mathcal{U}_{q}^{j}leq max{0, 2dim_Hmathcal{U}_q-1}text{ for all } jin{2,3,ldots}.$$ Here $q_{KL}$ is the Komornik-Loreti constant. As a corollary of this result, we show that for any $jin{2,3,ldots},$ the function mapping $q$ to $dim_{H}mathcal{U}_{q}^{j}$ is not continuous.
163 - Yong Zhang 2021
The Apery numbers $A_n$ and the Franel numbers $f_n$ are defined by $$A_n=sum_{k=0}^{n}{binom{n+k}{2k}}^2{binom{2k}{k}}^2 {rm and } f_n=sum_{k=0}^{n}{binom{n}{k}}^3(n=0, 1, cdots,).$$ In this paper, we prove three supercongruences for Apery numbers or Franel numbers conjectured by Z.-W. Sun. Let $pgeq 5$ be a prime and let $nin mathbb{Z}^{+}$. We show that begin{align} otag frac{1}{n}bigg(sum_{k=0}^{pn-1}(2k+1)A_k-psum_{k=0}^{n-1}(2k+1)A_kbigg)equiv0pmod{p^{4+3 u_p(n)}} end{align} and begin{align} otag frac{1}{n^3}bigg(sum_{k=0}^{pn-1}(2k+1)^3A_k-p^3sum_{k=0}^{n-1}(2k+1)^3A_kbigg)equiv0pmod{p^{6+3 u_p(n)}}, end{align} where $ u_p(n)$ denotes the $p$-adic order of $n$. Also, for any prime $p$ we have begin{align} otag frac{1}{n^3}bigg(sum_{k=0}^{pn-1}(3k+2)(-1)^kf_k-p^2sum_{k=0}^{n-1}(3k+2)(-1)^kf_kbigg)equiv0pmod{p^{3}}. end{align}
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا