ترغب بنشر مسار تعليمي؟ اضغط هنا

Explainable Person Re-Identification with Attribute-guided Metric Distillation

371   0   0.0 ( 0 )
 نشر من قبل Xinchen Liu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Despite the great progress of person re-identification (ReID) with the adoption of Convolutional Neural Networks, current ReID models are opaque and only outputs a scalar distance between two persons. There are few methods providing users semantically understandable explanations for why two persons are the same one or not. In this paper, we propose a post-hoc method, named Attribute-guided Metric Distillation (AMD), to explain existing ReID models. This is the first method to explore attributes to answer: 1) what and where the attributes make two persons different, and 2) how much each attribute contributes to the difference. In AMD, we design a pluggable interpreter network for target models to generate quantitative contributions of attributes and visualize accurate attention maps of the most discriminative attributes. To achieve this goal, we propose a metric distillation loss by which the interpreter learns to decompose the distance of two persons into components of attributes with knowledge distilled from the target model. Moreover, we propose an attribute prior loss to make the interpreter generate attribute-guided attention maps and to eliminate biases caused by the imbalanced distribution of attributes. This loss can guide the interpreter to focus on the exclusive and discriminative attributes rather than the large-area but common attributes of two persons. Comprehensive experiments show that the interpreter can generate effective and intuitive explanations for varied models and generalize well under cross-domain settings. As a by-product, the accuracy of target models can be further improved with our interpreter.



قيم البحث

اقرأ أيضاً

Occluded person re-identification (ReID) aims to match person images with occlusion. It is fundamentally challenging because of the serious occlusion which aggravates the misalignment problem between images. At the cost of incorporating a pose estima tor, many works introduce pose information to alleviate the misalignment in both training and testing. To achieve high accuracy while preserving low inference complexity, we propose a network named Pose-Guided Feature Learning with Knowledge Distillation (PGFL-KD), where the pose information is exploited to regularize the learning of semantics aligned features but is discarded in testing. PGFL-KD consists of a main branch (MB), and two pose-guided branches, ieno, a foreground-enhanced branch (FEB), and a body part semantics aligned branch (SAB). The FEB intends to emphasise the features of visible body parts while excluding the interference of obstructions and background (ieno, foreground feature alignment). The SAB encourages different channel groups to focus on different body parts to have body part semantics aligned representation. To get rid of the dependency on pose information when testing, we regularize the MB to learn the merits of the FEB and SAB through knowledge distillation and interaction-based training. Extensive experiments on occluded, partial, and holistic ReID tasks show the effectiveness of our proposed network.
While attributes have been widely used for person re-identification (Re-ID) which aims at matching the same person images across disjoint camera views, they are used either as extra features or for performing multi-task learning to assist the image-i mage matching task. However, how to find a set of person images according to a given attribute description, which is very practical in many surveillance applications, remains a rarely investigated cross-modality matching problem in person Re-ID. In this work, we present this challenge and formulate this task as a joint space learning problem. By imposing an attribute-guided attention mechanism for images and a semantic consistent adversary strategy for attributes, each modality, i.e., images and attributes, successfully learns semantically correlated concepts under the guidance of the other. We conducted extensive experiments on three attribute datasets and demonstrated that the proposed joint space learning method is so far the most effective method for the attribute-image cross-modality person Re-ID problem.
Person re-identification (re-ID) plays an important role in applications such as public security and video surveillance. Recently, learning from synthetic data, which benefits from the popularity of synthetic data engine, have achieved remarkable per formance. However, existing synthetic datasets are in small size and lack of diversity, which hinders the development of person re-ID in real-world scenarios. To address this problem, firstly, we develop a large-scale synthetic data engine, the salient characteristic of this engine is controllable. Based on it, we build a large-scale synthetic dataset, which are diversified and customized from different attributes, such as illumination and viewpoint. Secondly, we quantitatively analyze the influence of dataset attributes on re-ID system. To our best knowledge, this is the first attempt to explicitly dissect person re-ID from the aspect of attribute on synthetic dataset. Comprehensive experiments help us have a deeper understanding of the fundamental problems in person re-ID. Our research also provides useful insights for dataset building and future practical usage.
Person re-identification (Re-ID) is a challenging task as persons are often in different backgrounds. Most recent Re-ID methods treat the foreground and background information equally for person discriminative learning, but can easily lead to potenti al false alarm problems when different persons are in similar backgrounds or the same person is in different backgrounds. In this paper, we propose a Foreground-Guided Texture-Focused Network (FTN) for Re-ID, which can weaken the representation of unrelated background and highlight the attributes person-related in an end-to-end manner. FTN consists of a semantic encoder (S-Enc) and a compact foreground attention module (CFA) for Re-ID task, and a texture-focused decoder (TF-Dec) for reconstruction task. Particularly, we build a foreground-guided semi-supervised learning strategy for TF-Dec because the reconstructed ground-truths are only the inputs of FTN weighted by the Gaussian mask and the attention mask generated by CFA. Moreover, a new gradient loss is introduced to encourage the network to mine the texture consistency between the inputs and the reconstructed outputs. Our FTN is computationally efficient and extensive experiments on three commonly used datasets Market1501, CUHK03 and MSMT17 demonstrate that the proposed method performs favorably against the state-of-the-art methods.
Vehicle re-identification (reID) plays an important role in the automatic analysis of the increasing urban surveillance videos, which has become a hot topic in recent years. However, it poses the critical but challenging problem that is caused by var ious viewpoints of vehicles, diversified illuminations and complicated environments. Till now, most existing vehicle reID approaches focus on learning metrics or ensemble to derive better representation, which are only take identity labels of vehicle into consideration. However, the attributes of vehicle that contain detailed descriptions are beneficial for training reID model. Hence, this paper proposes a novel Attribute-Guided Network (AGNet), which could learn global representation with the abundant attribute features in an end-to-end manner. Specially, an attribute-guided module is proposed in AGNet to generate the attribute mask which could inversely guide to select discriminative features for category classification. Besides that, in our proposed AGNet, an attribute-based label smoothing (ALS) loss is presented to better train the reID model, which can strength the distinct ability of vehicle reID model to regularize AGNet model according to the attributes. Comprehensive experimental results clearly demonstrate that our method achieves excellent performance on both VehicleID dataset and VeRi-776 dataset.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا