ﻻ يوجد ملخص باللغة العربية
Person re-identification (Re-ID) is a challenging task as persons are often in different backgrounds. Most recent Re-ID methods treat the foreground and background information equally for person discriminative learning, but can easily lead to potential false alarm problems when different persons are in similar backgrounds or the same person is in different backgrounds. In this paper, we propose a Foreground-Guided Texture-Focused Network (FTN) for Re-ID, which can weaken the representation of unrelated background and highlight the attributes person-related in an end-to-end manner. FTN consists of a semantic encoder (S-Enc) and a compact foreground attention module (CFA) for Re-ID task, and a texture-focused decoder (TF-Dec) for reconstruction task. Particularly, we build a foreground-guided semi-supervised learning strategy for TF-Dec because the reconstructed ground-truths are only the inputs of FTN weighted by the Gaussian mask and the attention mask generated by CFA. Moreover, a new gradient loss is introduced to encourage the network to mine the texture consistency between the inputs and the reconstructed outputs. Our FTN is computationally efficient and extensive experiments on three commonly used datasets Market1501, CUHK03 and MSMT17 demonstrate that the proposed method performs favorably against the state-of-the-art methods.
The performance of person re-identification (Re-ID) has been seriously effected by the large cross-view appearance variations caused by mutual occlusions and background clutters. Hence learning a feature representation that can adaptively emphasize t
Despite the great progress of person re-identification (ReID) with the adoption of Convolutional Neural Networks, current ReID models are opaque and only outputs a scalar distance between two persons. There are few methods providing users semanticall
Existing alignment-based methods have to employ the pretrained human parsing models to achieve the pixel-level alignment, and cannot identify the personal belongings (e.g., backpacks and reticule) which are crucial to person re-ID. In this paper, we
Re-identifying a person across multiple disjoint camera views is important for intelligent video surveillance, smart retailing and many other applications. However, existing person re-identification (ReID) methods are challenged by the ubiquitous occ
Most state-of-the-art person re-identification (re-id) methods depend on supervised model learning with a large set of cross-view identity labelled training data. Even worse, such trained models are limited to only the same-domain deployment with sig