ترغب بنشر مسار تعليمي؟ اضغط هنا

Connecting X-ray nuclear winds with galaxy-scale ionised outflows in two $zsim1.5$ lensed quasars

93   0   0.0 ( 0 )
 نشر من قبل Giulia Tozzi
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Outflows driven by active galactic nuclei (AGN) are expected to have a significant impact on the host galaxy evolution, but it is still debated how they are accelerated and propagate on galaxy-wide scales. This work addresses these questions by studying the link between X-ray, nuclear ultra-fast outflows (UFOs) and extended ionised outflows, for the first time in two quasars close to the peak of AGN activity ($zsim2$), where AGN feedback is expected to be more effective. As targets, we selected two multiple-lensed quasars at $zsim1.5$, HS 0810+2554 and SDSS J1353+1138, known to host UFOs and observed with the near-IR integral field spectrometer SINFONI at the VLT. We performed a kinematical analysis of the [O III]$lambda$5007 optical emission line, in order to trace the presence of ionised outflows. We detected spatially resolved ionised outflows in both galaxies, extended more than 8 kpc and moving up to $v>2000$ km/s. We derived mass outflow rates of $sim$12 M$_{sun}$/yr and $sim$2 M$_{sun}$/yr for HS 0810+2554 and SDSS J1353+1138. Comparing with the co-hosted UFO energetics, the ionised outflow energetics in HS 0810+2554 is broadly consistent with a momentum-driven regime of wind propagation, while in SDSS J1353+1138 it differs by a factor of $sim$100 from theoretical predictions, requiring either a massive molecular outflow or a high variability of the AGN activity to account for such a discrepancy. By additionally considering our results with those from the small sample of well-studied objects (all local but one), with both UFO and extended (ionised/atomic/molecular) outflow detections, we found that in 10 out of 12 galaxies the large-scale outflow energetics is consistent with the theoretical predictions of either a momentum- or an energy-driven scenario. This suggests that such models explain relatively well the acceleration mechanism of AGN-driven winds on large scales.

قيم البحث

اقرأ أيضاً

We use MUSE adaptive optics (AO) data in Narrow Field Mode to study the properties of the ionised gas in MR 2251-178 and PG 1126-041, two nearby (z~0.06) bright quasars hosting sub-pc scale Ultra Fast Outflows (UFOs) detected in the X-ray band. We de compose the optical emission from diffuse gas into a low- and a high-velocity components. The former is characterised by a clean, regular velocity field and a low (~80 km/s) velocity dispersion. It traces regularly rotating gas in PG 1126-041, while in MR 2251-178 it is possibly associated to tidal debris from a recent merger or flyby. The other component is found to be extended up to a few kpc from the nuclei, and shows a high (~800 km/s) velocity dispersion and a blue-shifted mean velocity, as expected from AGN-driven outflows. We estimate mass outflow rates up to a few Mo/yr and kinetic efficiencies between 0.1-0.4 per cent, in line with those of galaxies hosting AGNs of similar luminosity. The momentum rates of these ionised outflows are comparable to those measured for the UFOs at sub-pc scales, consistent with a momentum-driven wind propagation. Pure energy-driven winds are excluded unless about 100x additional momentum is locked in massive molecular winds. By comparing the outflow properties of our sources with those of a small sample of well-studied QSOs hosting UFOs from the literature, we find that winds seem to systematically lie either in a momentum-driven or in an energy-driven regime, indicating that these two theoretical models bracket very well the physics of AGN-driven winds.
We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of the quadruply lensed z=1.51 quasar HS 0810+2554 which provide useful insight on the kinematics and morphology of the CO molecular gas and the ~2 mm continuum emission in t he quasar host galaxy. Lens modeling of the mm-continuum and the spectrally integrated CO(3-2) images indicates that the source of the mm-continuum has an eccentricity of e~0.9 with a size of ~1.6 kpc and the source of line emission has an eccentricity of e~0.7 with a size of ~1 kpc. The spatially integrated emission of the CO(2-1) and CO(3-2) lines shows a triple peak structure with the outer peaks separated by Dv_21 = 220 +- 19 km s^-1 and Dv_32 = 245 +/- 28 km s^-1, respectively, suggesting the presence of rotating molecular CO line emitting gas. Lensing inversion of the high spatial resolution images confirms the presence of rotation of the line emitting gas. Assuming a conversion factor of alpha_CO = 0.8 M_solar (K km s^-1 pc^2)^-1 we find the molecular gas mass of HS 0810+2554 to be M _ Mol = [(5.2 +/- 1.5)/mu_32] x10^10 M_solar, where mu_32 is the magnification of the CO(3-2) emission. We report the possible detection, at the 3.0 - 4.7 sigma confidence level, of shifted CO(3-2) emission lines of high-velocity clumps of CO emission with velocities up to 1702 km s^-1. We find that the momentum boost of the large scale molecular wind is below the value predicted for an energy-conserving outflow given the momentum flux observed in the small scale ultrafast outflow.
Fast outflows of gas, driven by the interaction between the radio-jets and ISM of the host galaxy, are being observed in an increasing number of galaxies. One such example is the nearby radio galaxy 3C293. In this paper we present Integral Field Unit (IFU) observations taken with OASIS on the William Herschel Telescope (WHT), enabling us to map the spatial extent of the ionised gas outflows across the central regions of the galaxy. The jet-driven outflow in 3C293 is detected along the inner radio lobes with a mass outflow rate ranging from $sim 0.05-0.17$ solar masses/yr (in ionised gas) and corresponding kinetic power of $sim 0.5-3.5times 10^{40}$ erg/s. Investigating the kinematics of the gas surrounding the radio jets (i.e. not directly associated with the outflow), we find line-widths broader than $300$ km/s up to 5 kpc in the radial direction from the nucleus (corresponding to 3.5 kpc in the direction perpendicular to the radio axis at maximum extent). Along the axis of the radio jet line-widths $>400$ km/s are detected out to 7 kpc from the nucleus and line-widths of $>500$ km/s at a distance of 12 kpc from the nucleus, indicating that the disturbed kinematics clearly extend well beyond the high surface brightness radio structures of the jets. This is suggestive of the cocoon structure seen in simulations of jet-ISM interaction and implies that the radio jets are capable of disturbing the gas throughout the central regions of the host galaxy in all directions.
We use MUSE/VLT to conduct a survey of $zsim3$ physical quasar pairs at close separation with a fast observation strategy. Our aim is twofold: (i) explore the Ly$alpha$ glow around the faint-end of the quasar population; (ii) take advantage of the co mbined illumination of a quasar pair to unveil large-scale intergalactic structures extending between the two quasars. Here, we report the results for a quasar pair ($z=3.020,3.008$; $i=21.84,22.15$), separated by 11.6 arcsec (or 89 projected kpc). MUSE reveals filamentary Ly$alpha$ structures extending between the two quasars with an average surface brightness of SB$_{rm Lyalpha}=1.8times10^{-18}$ erg s$^{-1}$ cm$^{-2}$ arcsec$^{-2}$. Photoionization models of the constraints in the Ly$alpha$, HeII, and CIV line emissions show that the emitting structures are intergalactic bridges with an extent between $sim89$ and up to $sim600$ kpc. Our models rule out the possibility that the structure extends for $sim 2.9$ Mpc, i.e., the separation inferred from the uncertain systemic redshift difference of the quasars if the difference was only due to the Hubble flow. At the current spatial resolution and surface brightness limit, the average projected width of an individual bridge is about 35 kpc. We also detect a strong absorption in HI, NV, and CIV along the background sight-line at higher $z$, which we interpret as due to at least two components of cool, metal enriched, and relatively ionized CGM or IGM surrounding the quasar pair. Two additional HI absorbers are detected along both quasar sight-lines at $sim -900$ and $-2800$ km s$^{-1}$ from the system, with the latter having associated CIV absorption only along the foreground quasar sight-line. The absence of galaxies in the MUSE field of view at the redshifts of these two absorbers suggests that they trace large-scale structures or expanding shells in front of the quasar pair.
We perform a joint-analysis of high spatial resolution molecular gas and star-formation rate (SFR) maps in main-sequence star-forming galaxies experiencing galactic-scale outflows of ionised gas. Our aim is to understand the mechanism that determines which galaxies are able to launch these intense winds. We observed CO(1-0) at 1 resolution with ALMA in 16 edge-on galaxies, which also have 2 spatial resolution optical integral field observations from the SAMI Galaxy Survey. Half the galaxies in the sample were previously identified as harbouring intense and large-scale outflows of ionised gas (outflow-types), the rest serve as control galaxies. The dataset is complemented by integrated CO(1-0) observations from the IRAM 30-m telescope to probe the total molecular gas reservoirs. We find that the galaxies powering outflows do not possess significantly different global gas fractions or star-formation efficiencies when compared with a control sample. However, the ALMA maps reveal that the molecular gas in the outflow-type galaxies is distributed more centrally than in the control galaxies. For our outflow-type objects, molecular gas and star-formation is largely confined within their inner effective radius ($rm r_{eff}$), whereas in the control sample the distribution is more diffuse, extending far beyond $rm r_{eff}$. We infer that outflows in normal star-forming galaxies may be caused by dynamical mechanisms that drive molecular gas into their central regions, which can result in locally-enhanced gas surface density and star-formation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا