ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery of intergalactic bridges connecting two faint $zsim3$ quasars

81   0   0.0 ( 0 )
 نشر من قبل Fabrizio Arrigoni Battaia
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use MUSE/VLT to conduct a survey of $zsim3$ physical quasar pairs at close separation with a fast observation strategy. Our aim is twofold: (i) explore the Ly$alpha$ glow around the faint-end of the quasar population; (ii) take advantage of the combined illumination of a quasar pair to unveil large-scale intergalactic structures extending between the two quasars. Here, we report the results for a quasar pair ($z=3.020,3.008$; $i=21.84,22.15$), separated by 11.6 arcsec (or 89 projected kpc). MUSE reveals filamentary Ly$alpha$ structures extending between the two quasars with an average surface brightness of SB$_{rm Lyalpha}=1.8times10^{-18}$ erg s$^{-1}$ cm$^{-2}$ arcsec$^{-2}$. Photoionization models of the constraints in the Ly$alpha$, HeII, and CIV line emissions show that the emitting structures are intergalactic bridges with an extent between $sim89$ and up to $sim600$ kpc. Our models rule out the possibility that the structure extends for $sim 2.9$ Mpc, i.e., the separation inferred from the uncertain systemic redshift difference of the quasars if the difference was only due to the Hubble flow. At the current spatial resolution and surface brightness limit, the average projected width of an individual bridge is about 35 kpc. We also detect a strong absorption in HI, NV, and CIV along the background sight-line at higher $z$, which we interpret as due to at least two components of cool, metal enriched, and relatively ionized CGM or IGM surrounding the quasar pair. Two additional HI absorbers are detected along both quasar sight-lines at $sim -900$ and $-2800$ km s$^{-1}$ from the system, with the latter having associated CIV absorption only along the foreground quasar sight-line. The absence of galaxies in the MUSE field of view at the redshifts of these two absorbers suggests that they trace large-scale structures or expanding shells in front of the quasar pair.



قيم البحث

اقرأ أيضاً

We present the discovery of one or two extremely faint z~6 quasars in 6.5 deg^2 utilizing a unique capability of the wide-field imaging of the Subaru/Suprime-Cam. The quasar selection was made in (i-z_B) and (z_B-z_R) colors, where z_B and z_R are ba ndpasses with central wavelengths of 8842A and 9841A, respectively. The color selection can effectively isolate quasars at z~6 from M/L/T dwarfs without the J-band photometry down to z_R<24.0, which is 3.5 mag. deeper than SDSS. We have selected 17 promising quasar candidates. The follow-up spectroscopy for seven targets identified one apparent quasar at z=6.156 with M_1450=-23.10. We also identified one possible quasar at z=6.041 with a faint continuum of M_1450=-22.58 and a narrow Lyman-alpha emission with HWHM=427 km/s, which cannot be distinguished from Lyman-alpha emitters. We derive the quasar luminosity function at z~6 by combining our faint quasar sample with the bright quasar samples by SDSS and CFHQS. Including our data points invokes a higher number density in the faintest bin of the quasar luminosity function than the previous estimate employed. This suggests a steeper faint-end slope than lower-z, though it is yet uncertain based on a small number of spectroscopically identified faint quasars and several quasar candidates are still remain to be diagnosed. The steepening of the quasar luminosity function at the faint-end does increase the expected emission rate of the ionizing photon, however, it only changes by a factor of ~2-6. This was found to be still insufficient for the required photon budget of reionization at z~6.
313 - John R. Lucey 2017
Gravitationally lensed quasars are powerful and versatile astrophysical tools, but they are challengingly rare. In particular, only ~25 well-characterized quadruple systems are known to date. To refine the target catalogue for the forthcoming Taipan Galaxy Survey, the images of a large number of sources are being visually inspected in order to identify objects that are confused by a foreground star or galaxies that have a distinct multi-component structure. An unexpected by-product of this work has been the serendipitous discovery of about a dozen galaxies that appear to be lensing quasars, i.e. pairs or quartets of foreground stellar objects in close proximity to the target source. Here we report two diamond-shaped systems. Follow-up spectroscopy with the IMACS instrument on the 6.5m Magellan Baade telescope confirms one of these as a z = 1.975 quasar quadruply lensed by a double galaxy at z = 0.293. Photometry from publicly available survey images supports the conclusion that the other system is a highly sheared quadruply-imaged quasar. In starting with objects thought to be galaxies, our lens finding technique complements the conventional approach of first identifying sources with quasar-like colours and subsequently finding evidence of lensing.
We present spectroscopic confirmation of two new lensed quasars via data obtained at the 6.5m Magellan/Baade Telescope. The lens candidates have been selected from the Dark Energy Survey (DES) and WISE based on their multi-band photometry and extende d morphology in DES images. Images of DES J0115-5244 show two blue point sources at either side of a red galaxy. Our long-slit data confirm that both point sources are images of the same quasar at $z_{s}=1.64.$ The Einstein Radius estimated from the DES images is $0.51$. DES J2200+0110 is in the area of overlap between DES and the Sloan Digital Sky Survey (SDSS). Two blue components are visible in the DES and SDSS images. The SDSS fiber spectrum shows a quasar component at $z_{s}=2.38$ and absorption compatible with Mg II and Fe II at $z_{l}=0.799$, which we tentatively associate with the foreground lens galaxy. The long-slit Magellan spectra show that the blue components are resolved images of the same quasar. The Einstein Radius is $0.68$ corresponding to an enclosed mass of $1.6times10^{11},M_{odot}.$ Three other candidates were observed and rejected, two being low-redshift pairs of starburst galaxies, and one being a quasar behind a blue star. These first confirmation results provide an important empirical validation of the data-mining and model-based selection that is being applied to the entire DES dataset.
We present a search for bright $zsim5$ quasars using imaging data from SkyMapper Southern Survey, Pan-STARRS1 and the Wide-field Infrared Survey Explorer (WISE). We select two sets of candidates using WISE with optical bands from SkyMapper and altern atively from Pan-STARRS1, limited to a magnitude of $i<18.2$. We follow up several candidates with spectroscopy and find that the four candidates common to both lists are quasars, while others turned out to be cool stars. Two of the four quasars, SMSS J013539.27-212628.4 at $z=4.86$ and SMSS J093032.58-221207.7 at $z=4.94$, are new discoveries and ranked among the dozen brightest known $z>4.5$ QSOs in the $i$-band.
92 - G. Tozzi , G. Cresci , A. Marasco 2021
Outflows driven by active galactic nuclei (AGN) are expected to have a significant impact on the host galaxy evolution, but it is still debated how they are accelerated and propagate on galaxy-wide scales. This work addresses these questions by study ing the link between X-ray, nuclear ultra-fast outflows (UFOs) and extended ionised outflows, for the first time in two quasars close to the peak of AGN activity ($zsim2$), where AGN feedback is expected to be more effective. As targets, we selected two multiple-lensed quasars at $zsim1.5$, HS 0810+2554 and SDSS J1353+1138, known to host UFOs and observed with the near-IR integral field spectrometer SINFONI at the VLT. We performed a kinematical analysis of the [O III]$lambda$5007 optical emission line, in order to trace the presence of ionised outflows. We detected spatially resolved ionised outflows in both galaxies, extended more than 8 kpc and moving up to $v>2000$ km/s. We derived mass outflow rates of $sim$12 M$_{sun}$/yr and $sim$2 M$_{sun}$/yr for HS 0810+2554 and SDSS J1353+1138. Comparing with the co-hosted UFO energetics, the ionised outflow energetics in HS 0810+2554 is broadly consistent with a momentum-driven regime of wind propagation, while in SDSS J1353+1138 it differs by a factor of $sim$100 from theoretical predictions, requiring either a massive molecular outflow or a high variability of the AGN activity to account for such a discrepancy. By additionally considering our results with those from the small sample of well-studied objects (all local but one), with both UFO and extended (ionised/atomic/molecular) outflow detections, we found that in 10 out of 12 galaxies the large-scale outflow energetics is consistent with the theoretical predictions of either a momentum- or an energy-driven scenario. This suggests that such models explain relatively well the acceleration mechanism of AGN-driven winds on large scales.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا