ﻻ يوجد ملخص باللغة العربية
It is known that the standard Schwarzschild interior metric is conformally flat and generates a constant density sphere in any spacetime dimension in Einstein and Einstein--Gauss--Bonnet gravity. This motivates the questions: In EGB does the conformal flatness criterion yield the Schwarzschild metric? Does the assumption of constant density generate the Schwarzschild interior spacetime? The answer to both questions turn out in the negative in general. In the case of the constant density sphere, a generalised Schwarzschild metric emerges. When we invoke the conformal flatness condition the Schwarschild interior solution is obtained as one solution and another metric which does not yield a constant density hypersphere in EGB theory is found. For the latter solution one of the gravitational metrics is obtained explicitly while the other is determined up to quadratures in 5 and 6 dimensions. The physical properties of these new solutions are studied with the use of numerical methods and a parameter space is located for which both models display pleasing physical behaviour.
The complete class of conformally flat, pure radiation metrics is given, generalising the metric recently given by Wils.
In this brief report, we investigate the existence of 4-dimensional static spherically symmetric black holes (BHs) in the Einstein-complex-scalar-Gauss-Bonnet (EcsGB) gravity with an arbitrary potential $V(phi)$ and a coupling $f(phi)$ between the sc
We discuss the cosmological evolution of a braneworld in five dimensional Gauss-Bonnet gravity. Our discussion allows the fifth (bulk) dimension to be space-like as well as time-like. The resulting equations of motion have the form of a cubic equatio
We present results from a numerical study of spherical gravitational collapse in shift symmetric Einstein dilaton Gauss-Bonnet (EdGB) gravity. This modified gravity theory has a single coupling parameter that when zero reduces to general relativity (
The current trend concerning dense matter physics at sufficiently high densities and low temperatures is expected to behave as a degenerate Fermi gas of quarks forming Cooper pairs, namely a color superconductor, in the core of compact objects. In th