ترغب بنشر مسار تعليمي؟ اضغط هنا

Advances in Importance Sampling

119   0   0.0 ( 0 )
 نشر من قبل V\\'ictor Elvira
 تاريخ النشر 2021
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Importance sampling (IS) is a Monte Carlo technique for the approximation of intractable distributions and integrals with respect to them. The origin of IS dates from the early 1950s. In the last decades, the rise of the Bayesian paradigm and the increase of the available computational resources have propelled the interest in this theoretically sound methodology. In this paper, we first describe the basic IS algorithm and then revisit the recent advances in this methodology. We pay particular attention to two sophisticated lines. First, we focus on multiple IS (MIS), the case where more than one proposal is available. Second, we describe adaptive IS (AIS), the generic methodology for adapting one or more proposals.



قيم البحث

اقرأ أيضاً

The Adaptive Multiple Importance Sampling (AMIS) algorithm is aimed at an optimal recycling of past simulations in an iterated importance sampling scheme. The difference with earlier adaptive importance sampling implementations like Population Monte Carlo is that the importance weights of all simulated values, past as well as present, are recomputed at each iteration, following the technique of the deterministic multiple mixture estimator of Owen and Zhou (2000). Although the convergence properties of the algorithm cannot be fully investigated, we demonstrate through a challenging banana shape target distribution and a population genetics example that the improvement brought by this technique is substantial.
223 - L. Martino , V. Elvira , D. Luengo 2015
Monte Carlo methods represent the de facto standard for approximating complicated integrals involving multidimensional target distributions. In order to generate random realizations from the target distribution, Monte Carlo techniques use simpler pro posal probability densities to draw candidate samples. The performance of any such method is strictly related to the specification of the proposal distribution, such that unfortunate choices easily wreak havoc on the resulting estimators. In this work, we introduce a layered (i.e., hierarchical) procedure to generate samples employed within a Monte Carlo scheme. This approach ensures that an appropriate equivalent proposal density is always obtained automatically (thus eliminating the risk of a catastrophic performance), although at the expense of a moderate increase in the complexity. Furthermore, we provide a general unified importance sampling (IS) framework, where multiple proposal densities are employed and several IS schemes are introduced by applying the so-called deterministic mixture approach. Finally, given these schemes, we also propose a novel class of adaptive importance samplers using a population of proposals, where the adaptation is driven by independent parallel or interacting Markov Chain Monte Carlo (MCMC) chains. The resulting algorithms efficiently combine the benefits of both IS and MCMC methods.
116 - Olivier Cappe 2008
In this paper, we propose an adaptive algorithm that iteratively updates both the weights and component parameters of a mixture importance sampling density so as to optimise the importance sampling performances, as measured by an entropy criterion. T he method is shown to be applicable to a wide class of importance sampling densities, which includes in particular mixtures of multivariate Student t distributions. The performances of the proposed scheme are studied on both artificial and real examples, highlighting in particular the benefit of a novel Rao-Blackwellisation device which can be easily incorporated in the updating scheme.
118 - Jean-Michel Marin 2012
Among Monte Carlo techniques, the importance sampling requires fine tuning of a proposal distribution, which is now fluently resolved through iterative schemes. The Adaptive Multiple Importance Sampling (AMIS) of Cornuet et al. (2012) provides a sign ificant improvement in stability and effective sample size due to the introduction of a recycling procedure. However, the consistency of the AMIS estimator remains largely open. In this work we prove the convergence of the AMIS, at a cost of a slight modification in the learning process. Contrary to Douc et al. (2007a), results are obtained here in the asymptotic regime where the number of iterations is going to infinity while the number of drawings per iteration is a fixed, but growing sequence of integers. Hence some of the results shed new light on adaptive population Monte Carlo algorithms in that last regime.
Bayesian methods and their implementations by means of sophisticated Monte Carlo techniques have become very popular in signal processing over the last years. Importance Sampling (IS) is a well-known Monte Carlo technique that approximates integrals involving a posterior distribution by means of weighted samples. In this work, we study the assignation of a single weighted sample which compresses the information contained in a population of weighted samples. Part of the theory that we present as Group Importance Sampling (GIS) has been employed implicitly in different works in the literature. The provided analysis yields several theoretical and practical consequences. For instance, we discuss the application of GIS into the Sequential Importance Resampling framework and show that Independent Multiple Try Metropolis schemes can be interpreted as a standard Metropolis-Hastings algorithm, following the GIS approach. We also introduce two novel Markov Chain Monte Carlo (MCMC) techniques based on GIS. The first one, named Group Metropolis Sampling method, produces a Markov chain of sets of weighted samples. All these sets are then employed for obtaining a unique global estimator. The second one is the Distributed Particle Metropolis-Hastings technique, where different parallel particle filters are jointly used to drive an MCMC algorithm. Different resampled trajectories are compared and then tested with a proper acceptance probability. The novel schemes are tested in different numerical experiments such as learning the hyperparameters of Gaussian Processes, two localization problems in a wireless sensor network (with synthetic and real data) and the tracking of vegetation parameters given satellite observations, where they are compared with several benchmark Monte Carlo techniques. Three illustrative Matlab demos are also provided.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا