ﻻ يوجد ملخص باللغة العربية
Among Monte Carlo techniques, the importance sampling requires fine tuning of a proposal distribution, which is now fluently resolved through iterative schemes. The Adaptive Multiple Importance Sampling (AMIS) of Cornuet et al. (2012) provides a significant improvement in stability and effective sample size due to the introduction of a recycling procedure. However, the consistency of the AMIS estimator remains largely open. In this work we prove the convergence of the AMIS, at a cost of a slight modification in the learning process. Contrary to Douc et al. (2007a), results are obtained here in the asymptotic regime where the number of iterations is going to infinity while the number of drawings per iteration is a fixed, but growing sequence of integers. Hence some of the results shed new light on adaptive population Monte Carlo algorithms in that last regime.
The Adaptive Multiple Importance Sampling (AMIS) algorithm is aimed at an optimal recycling of past simulations in an iterated importance sampling scheme. The difference with earlier adaptive importance sampling implementations like Population Monte
Monte Carlo methods represent the de facto standard for approximating complicated integrals involving multidimensional target distributions. In order to generate random realizations from the target distribution, Monte Carlo techniques use simpler pro
Nested sampling is a simulation method for approximating marginal likelihoods proposed by Skilling (2006). We establish that nested sampling has an approximation error that vanishes at the standard Monte Carlo rate and that this error is asymptotical
In this paper, we propose an adaptive algorithm that iteratively updates both the weights and component parameters of a mixture importance sampling density so as to optimise the importance sampling performances, as measured by an entropy criterion. T
We consider a Bayesian hierarchical version of the normal theory general linear model which is practically relevant in the sense that it is general enough to have many applications and it is not straightforward to sample directly from the correspondi