ﻻ يوجد ملخص باللغة العربية
We introduce a novel method for reconstructing the projected matter distributions of galaxy clusters with weak-lensing (WL) data based on convolutional neural network (CNN). Training datasets are generated with ray-tracing through cosmological simulations. We control the noise level of the galaxy shear catalog such that it mimics the typical properties of the existing ground-based WL observations of galaxy clusters. We find that the mass reconstruction by our multi-layered CNN with the architecture of alternating convolution and trans-convolution filters significantly outperforms the traditional reconstruction methods. The CNN method provides better pixel-to-pixel correlations with the truth, restores more accurate positions of the mass peaks, and more efficiently suppresses artifacts near the field edges. In addition, the CNN mass reconstruction lifts the mass-sheet degeneracy when applied to sufficiently large fields. This implies that this CNN algorithm can be used to measure cluster masses in a model independent way for future wide-field WL surveys.
In light of the tension in cosmological constraints reported by the Planck team between their SZ-selected cluster counts and Cosmic Microwave Background (CMB) temperature anisotropies, we compare the Planck cluster mass estimates with robust, weak-le
We introduce a novel approach to reconstruct dark matter mass maps from weak gravitational lensing measurements. The cornerstone of the proposed method lies in a new modelling of the matter density field in the Universe as a mixture of two components
In this paper, we compare three methods to reconstruct galaxy cluster density fields with weak lensing data. The first method called FLens integrates an inpainting concept to invert the shear field with possible gaps, and a multi-scale entropy denois
We present the mass calibration for galaxy clusters detected with the AMICO code in KiDS DR3 data. The cluster sample comprises $sim$ 7000 objects and covers the redshift range 0.1 < $z$ < 0.6. We perform a weak lensing stacked analysis by binning th
Weak gravitational lensing studies of galaxy clusters often assume a spherical cluster model to simplify the analysis, but some recent studies have suggested this simplifying assumption may result in large biases in estimated cluster masses and conce