ﻻ يوجد ملخص باللغة العربية
Semiquantitative group testing (SQGT) is a pooling method in which the test outcomes represent bounded intervals for the number of defectives. Alternatively, it may be viewed as an adder channel with quantized outputs. SQGT represents a natural choice for Covid-19 group testing as it allows for a straightforward interpretation of the cycle threshold values produced by polymerase chain reactions (PCR). Prior work on SQGT did not address the need for adaptive testing with a small number of rounds as required in practice. We propose conceptually simple methods for 2-round and nonadaptive SQGT that significantly improve upon existing schemes by using ideas on nonbinary measurement matrices based on expander graphs and list-disjunct matrices.
The goal of group testing is to efficiently identify a few specific items, called positives, in a large population of items via tests. A test is an action on a subset of items which returns positive if the subset contains at least one positive and ne
The basic goal of threshold group testing is to identify up to $d$ defective items among a population of $n$ items, where $d$ is usually much smaller than $n$. The outcome of a test on a subset of items is positive if the subset has at least $u$ defe
In the long-studied problem of combinatorial group testing, one is asked to detect a set of $k$ defective items out of a population of size $n$, using $m ll n$ disjunctive measurements. In the non-adaptive setting, the most widely used combinatorial
In this paper, we propose algorithms that leverage a known community structure to make group testing more efficient. We consider a population organized in disjoint communities: each individual participates in a community, and its infection probabilit
In this paper, we propose algorithms that leverage a known community structure to make group testing more efficient. We consider a population organized in connected communities: each individual participates in one or more communities, and the infecti