ترغب بنشر مسار تعليمي؟ اضغط هنا

Semiquantitative Group Testing in at Most Two Rounds

83   0   0.0 ( 0 )
 نشر من قبل Ryan Gabrys
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Semiquantitative group testing (SQGT) is a pooling method in which the test outcomes represent bounded intervals for the number of defectives. Alternatively, it may be viewed as an adder channel with quantized outputs. SQGT represents a natural choice for Covid-19 group testing as it allows for a straightforward interpretation of the cycle threshold values produced by polymerase chain reactions (PCR). Prior work on SQGT did not address the need for adaptive testing with a small number of rounds as required in practice. We propose conceptually simple methods for 2-round and nonadaptive SQGT that significantly improve upon existing schemes by using ideas on nonbinary measurement matrices based on expander graphs and list-disjunct matrices.



قيم البحث

اقرأ أيضاً

The goal of group testing is to efficiently identify a few specific items, called positives, in a large population of items via tests. A test is an action on a subset of items which returns positive if the subset contains at least one positive and ne gative otherwise. In non-adaptive group testing, all tests are independent, can be performed in parallel and represented as a measurement matrix. In this work, we consider non-adaptive group testing with consecutive positives in which the items are linearly ordered and the positives are consecutive in that order. We proposed two improved algorithms for efficiently identifying consecutive positives. In particular, without storing measurement matrices, we can identify up to $d$ consecutive positives with $2 log_2{frac{n}{d}} + 2d$ ($4 log_2{frac{n}{d}} + 2d$, resp.) tests in $O left( log_2^2{frac{n}{d}} + d right)$ ($O left( log_2{frac{n}{d}} + d right)$, resp.) time. These results significantly improve the state-of-the-art scheme in which it takes $5 log_2{frac{n}{d}} + 2d + 21$ tests to identify the positives in $O left( frac{n}{d} log_2{frac{n}{d}} + d^2 right)$ time with the measurement matrices associated with the scheme stored somewhere.
The basic goal of threshold group testing is to identify up to $d$ defective items among a population of $n$ items, where $d$ is usually much smaller than $n$. The outcome of a test on a subset of items is positive if the subset has at least $u$ defe ctive items, negative if it has up to $ell$ defective items, where $0leqell<u$, and arbitrary otherwise. This is called threshold group testing. The parameter $g=u-ell-1$ is called textit{the gap}. In this paper, we focus on the case $g>0$, i.e., threshold group testing with a gap. Note that the results presented here are also applicable to the case $g = 0$; however, the results are not as efficient as those in related work. Currently, a few reported studies have investigated test designs and decoding algorithms for identifying defective items. Most of the previous studies have not been feasible because there are numerous constraints on their problem settings or the decoding complexities of their proposed schemes are relatively large. Therefore, it is compulsory to reduce the number of tests as well as the decoding complexity, i.e., the time for identifying the defective items, for achieving practical schemes. The work presented here makes five contributions. The first is a more accurate theorem for a non-adaptive algorithm for threshold group testing proposed by Chen and Fu. The second is an improvement in the construction of disjunct matrices, which are the main tools for tackling (threshold) group testing and other tasks such as constructing cover-free families or learning hidden graphs. The third and fourth contributions are a reduced exact upper bound on the number of tests and a reduced asymptotic bound on the decoding time for identifying defective items in a noisy setting on test outcomes. The fifth contribution is a simulation on the number of tests of the resulting improvements for previous work and the proposed theorems.
In the long-studied problem of combinatorial group testing, one is asked to detect a set of $k$ defective items out of a population of size $n$, using $m ll n$ disjunctive measurements. In the non-adaptive setting, the most widely used combinatorial objects are disjunct and list-disjunct matrices, which define incidence matrices of test schemes. Disjunct matrices allow the identification of the exact set of defectives, whereas list disjunct matrices identify a small superset of the defectives. Apart from the combinatorial guarantees, it is often of key interest to equip measurement designs with efficient decoding algorithms. The most efficient decoders should run in sublinear time in $n$, and ideally near-linear in the number of measurements $m$. In this work, we give several constructions with an optimal number of measurements and near-optimal decoding time for the most fundamental group testing tasks, as well as for central tasks in the compressed sensing and heavy hitters literature. For many of those tasks, the previous measurement-optimal constructions needed time either quadratic in the number of measurements or linear in the universe size. Most of our results are obtained via a clean and novel approach which avoids list-recoverable codes or related complex techniques which were present in almost every state-of-the-art work on efficiently decodable constructions of such objects.
In this paper, we propose algorithms that leverage a known community structure to make group testing more efficient. We consider a population organized in disjoint communities: each individual participates in a community, and its infection probabilit y depends on the community (s)he participates in. Use cases include families, students who participate in several classes, and workers who share common spaces. Group testing reduces the number of tests needed to identify the infected individuals by pooling diagnostic samples and testing them together. We show that if we design the testing strategy taking into account the community structure, we can significantly reduce the number of tests needed for adaptive and non-adaptive group testing, and can improve the reliability in cases where tests are noisy.
In this paper, we propose algorithms that leverage a known community structure to make group testing more efficient. We consider a population organized in connected communities: each individual participates in one or more communities, and the infecti on probability of each individual depends on the communities (s)he participates in. Use cases include students who participate in several classes, and workers who share common spaces. Group testing reduces the number of tests needed to identify the infected individuals by pooling diagnostic samples and testing them together. We show that making testing algorithms aware of the community structure, can significantly reduce the number of tests needed both for adaptive and non-adaptive group testing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا