ﻻ يوجد ملخص باللغة العربية
In this paper, we propose algorithms that leverage a known community structure to make group testing more efficient. We consider a population organized in disjoint communities: each individual participates in a community, and its infection probability depends on the community (s)he participates in. Use cases include families, students who participate in several classes, and workers who share common spaces. Group testing reduces the number of tests needed to identify the infected individuals by pooling diagnostic samples and testing them together. We show that if we design the testing strategy taking into account the community structure, we can significantly reduce the number of tests needed for adaptive and non-adaptive group testing, and can improve the reliability in cases where tests are noisy.
In this paper, we propose algorithms that leverage a known community structure to make group testing more efficient. We consider a population organized in connected communities: each individual participates in one or more communities, and the infecti
We will discuss superimposed codes and non-adaptive group testing designs arising from the potentialities of compressed genotyping models in molecular biology. The given paper was motivated by the 30th anniversary of Dyachkov-Rykov recurrent upper bo
We consider non-adaptive threshold group testing for identification of up to $d$ defective items in a set of $n$ items, where a test is positive if it contains at least $2 leq u leq d$ defective items, and negative otherwise. The defective items can
We consider an efficiently decodable non-adaptive group testing (NAGT) problem that meets theoretical bounds. The problem is to find a few specific items (at most $d$) satisfying certain characteristics in a colossal number of $N$ items as quickly as
The goal of threshold group testing is to identify up to $d$ defective items among a population of $n$ items, where $d$ is usually much smaller than $n$. A test is positive if it has at least $u$ defective items and negative otherwise. Our objective