ﻻ يوجد ملخص باللغة العربية
The virtual try-on task is so attractive that it has drawn considerable attention in the field of computer vision. However, presenting the three-dimensional (3D) physical characteristic (e.g., pleat and shadow) based on a 2D image is very challenging. Although there have been several previous studies on 2D-based virtual try-on work, most 1) required user-specified target poses that are not user-friendly and may not be the best for the target clothing, and 2) failed to address some problematic cases, including facial details, clothing wrinkles and body occlusions. To address these two challenges, in this paper, we propose an innovative template-free try-on image synthesis (TF-TIS) network. The TF-TIS first synthesizes the target pose according to the user-specified in-shop clothing. Afterward, given an in-shop clothing image, a user image, and a synthesized pose, we propose a novel model for synthesizing a human try-on image with the target clothing in the best fitting pose. The qualitative and quantitative experiments both indicate that the proposed TF-TIS outperforms the state-of-the-art methods, especially for difficult cases.
In this paper, we present a novel approach to synthesize realistic images based on their semantic layouts. It hypothesizes that for objects with similar appearance, they share similar representation. Our method establishes dependencies between region
We propose a novel Edge guided Generative Adversarial Network (EdgeGAN) for photo-realistic image synthesis from semantic layouts. Although considerable improvement has been achieved, the quality of synthesized images is far from satisfactory due to
Example-guided image synthesis aims to synthesize an image from a semantic label map and an exemplary image indicating style. We use the term style in this problem to refer to implicit characteristics of images, for example: in portraits style includ
Spatially-adaptive normalization (SPADE) is remarkably successful recently in conditional semantic image synthesis cite{park2019semantic}, which modulates the normalized activation with spatially-varying transformations learned from semantic layouts,
Image virtual try-on aims to fit a garment image (target clothes) to a person image. Prior methods are heavily based on human parsing. However, slightly-wrong segmentation results would lead to unrealistic try-on images with large artifacts. Inaccura