ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficient Semantic Image Synthesis via Class-Adaptive Normalization

245   0   0.0 ( 0 )
 نشر من قبل Dongdong Chen
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Spatially-adaptive normalization (SPADE) is remarkably successful recently in conditional semantic image synthesis cite{park2019semantic}, which modulates the normalized activation with spatially-varying transformations learned from semantic layouts, to prevent the semantic information from being washed away. Despite its impressive performance, a more thorough understanding of the advantages inside the box is still highly demanded to help reduce the significant computation and parameter overhead introduced by this novel structure. In this paper, from a return-on-investment point of view, we conduct an in-depth analysis of the effectiveness of this spatially-adaptive normalization and observe that its modulation parameters benefit more from semantic-awareness rather than spatial-adaptiveness, especially for high-resolution input masks. Inspired by this observation, we propose class-adaptive normalization (CLADE), a lightweight but equally-effective variant that is only adaptive to semantic class. In order to further improve spatial-adaptiveness, we introduce intra-class positional map encoding calculated from semantic layouts to modulate the normalization parameters of CLADE and propose a truly spatially-adaptive variant of CLADE, namely CLADE-ICPE.Through extensive experiments on multiple challenging datasets, we demonstrate that the proposed CLADE can be generalized to different SPADE-based methods while achieving comparable generation quality compared to SPADE, but it is much more efficient with fewer extra parameters and lower computational cost. The code and pretrained models are available at url{https://github.com/tzt101/CLADE.git}.

قيم البحث

اقرأ أيضاً

We propose semantic region-adaptive normalization (SEAN), a simple but effective building block for Generative Adversarial Networks conditioned on segmentation masks that describe the semantic regions in the desired output image. Using SEAN normaliza tion, we can build a network architecture that can control the style of each semantic region individually, e.g., we can specify one style reference image per region. SEAN is better suited to encode, transfer, and synthesize style than the best previous method in terms of reconstruction quality, variability, and visual quality. We evaluate SEAN on multiple datasets and report better quantitative metrics (e.g. FID, PSNR) than the current state of the art. SEAN also pushes the frontier of interactive image editing. We can interactively edit images by changing segmentation masks or the style for any given region. We can also interpolate styles from two reference images per region.
122 - Yi Wang , Lu Qi , Ying-Cong Chen 2021
In this paper, we present a novel approach to synthesize realistic images based on their semantic layouts. It hypothesizes that for objects with similar appearance, they share similar representation. Our method establishes dependencies between region s according to their appearance correlation, yielding both spatially variant and associated representations. Conditioning on these features, we propose a dynamic weighted network constructed by spatially conditional computation (with both convolution and normalization). More than preserving semantic distinctions, the given dynamic network strengthens semantic relevance, benefiting global structure and detail synthesis. We demonstrate that our method gives the compelling generation performance qualitatively and quantitatively with extensive experiments on benchmarks.
104 - Zhengyao Lv , Xiaoming Li , Xin Li 2021
Human pose transfer has received great attention due to its wide applications, yet is still a challenging task that is not well solved. Recent works have achieved great success to transfer the person image from the source to the target pose. However, most of them cannot well capture the semantic appearance, resulting in inconsistent and less realistic textures on the reconstructed results. To address this issue, we propose a new two-stage framework to handle the pose and appearance translation. In the first stage, we predict the target semantic parsing maps to eliminate the difficulties of pose transfer and further benefit the latter translation of per-region appearance style. In the second one, with the predicted target semantic maps, we suggest a new person image generation method by incorporating the region-adaptive normalization, in which it takes the per-region styles to guide the target appearance generation. Extensive experiments show that our proposed SPGNet can generate more semantic, consistent, and photo-realistic results and perform favorably against the state of the art methods in terms of quantitative and qualitative evaluation. The source code and model are available at https://github.com/cszy98/SPGNet.git.
Disentangling content and style information of an image has played an important role in recent success in image translation. In this setting, how to inject given style into an input image containing its own content is an important issue, but existing methods followed relatively simple approaches, leaving room for improvement especially when incorporating significant style changes. In response, we propose an advanced normalization technique based on adaptive convolution (AdaCoN), in order to properly impose style information into the content of an input image. In detail, after locally standardizing the content representation in a channel-wise manner, AdaCoN performs adaptive convolution where the convolution filter weights are dynamically estimated using the encoded style representation. The flexibility of AdaCoN can handle complicated image translation tasks involving significant style changes. Our qualitative and quantitative experiments demonstrate the superiority of our proposed method against various existing approaches that inject the style into the content.
The virtual try-on task is so attractive that it has drawn considerable attention in the field of computer vision. However, presenting the three-dimensional (3D) physical characteristic (e.g., pleat and shadow) based on a 2D image is very challenging . Although there have been several previous studies on 2D-based virtual try-on work, most 1) required user-specified target poses that are not user-friendly and may not be the best for the target clothing, and 2) failed to address some problematic cases, including facial details, clothing wrinkles and body occlusions. To address these two challenges, in this paper, we propose an innovative template-free try-on image synthesis (TF-TIS) network. The TF-TIS first synthesizes the target pose according to the user-specified in-shop clothing. Afterward, given an in-shop clothing image, a user image, and a synthesized pose, we propose a novel model for synthesizing a human try-on image with the target clothing in the best fitting pose. The qualitative and quantitative experiments both indicate that the proposed TF-TIS outperforms the state-of-the-art methods, especially for difficult cases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا