ترغب بنشر مسار تعليمي؟ اضغط هنا

Function-Correcting Codes

57   0   0.0 ( 0 )
 نشر من قبل Andreas Lenz
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Motivated by applications in machine learning and archival data storage, we introduce function-correcting codes, a new class of codes designed to protect a function evaluation of the data against errors. We show that function-correcting codes are equivalent to irregular-distance codes, i.e., codes that obey some given distance requirement between each pair of codewords. Using these connections, we study irregular-distance codes and derive general upper and lower bounds on their optimal redundancy. Since these bounds heavily depend on the specific function, we provide simplified, suboptimal bounds that are easier to evaluate. We further employ our general results to specific functions of interest and compare our results to standard error-correcting codes which protect the whole data.



قيم البحث

اقرأ أيضاً

We consider network coding for networks experiencing worst-case bit-flip errors, and argue that this is a reasonable model for highly dynamic wireless network transmissions. We demonstrate that in this setup prior network error-correcting schemes can be arbitrarily far from achieving the optimal network throughput. We propose a new metric for errors under this model. Using this metric, we prove a new Hamming-type upper bound on the network capacity. We also show a commensurate lower bound based on GV-type codes that can be used for error-correction. The codes used to attain the lower bound are non-coherent (do not require prior knowledge of network topology). The end-to-end nature of our design enables our codes to be overlaid on classical distributed random linear network codes. Further, we free internal nodes from having to implement potentially computationally intensive link-by-link error-correction.
The concept of asymmetric entanglement-assisted quantum error-correcting code (asymmetric EAQECC) is introduced in this article. Codes of this type take advantage of the asymmetry in quantum errors since phase-shift errors are more probable than qudi t-flip errors. Moreover, they use pre-shared entanglement between encoder and decoder to simplify the theory of quantum error correction and increase the communication capacity. Thus, asymmetric EAQECCs can be constructed from any pair of classical linear codes over an arbitrary field. Their parameters are described and a Gilbert-Varshamov bound is presented. Explicit parameters of asymmetric EAQECCs from BCH codes are computed and examples exceeding the introduced Gilbert-Varshamov bound are shown.
Because of its high data density and longevity, DNA is emerging as a promising candidate for satisfying increasing data storage needs. Compared to conventional storage media, however, data stored in DNA is subject to a wider range of errors resulting from various processes involved in the data storage pipeline. In this paper, we consider correcting duplication errors for both exact and noisy tandem duplications of a given length k. An exact duplication inserts a copy of a substring of length k of the sequence immediately after that substring, e.g., ACGT to ACGACGT, where k = 3, while a noisy duplication inserts a copy suffering from substitution noise, e.g., ACGT to ACGATGT. Specifically, we design codes that can correct any number of exact duplication and one noisy duplication errors, where in the noisy duplication case the copy is at Hamming distance 1 from the original. Our constructions rely upon recovering the duplication root of the stored codeword. We characterize the ways in which duplication errors manifest in the root of affected sequences and design efficient codes for correcting these error patterns. We show that the proposed construction is asymptotically optimal, in the sense that it has the same asymptotic rate as optimal codes correcting exact duplications only.
This paper investigates the problem of correcting multiple criss-cross insertions and deletions in arrays. More precisely, we study the unique recovery of $n times n$ arrays affected by $t$-criss-cross deletions defined as any combination of $t_r$ ro w and $t_c$ column deletions such that $t_r + t_c = t$ for a given $t$. We show an equivalence between correcting $t$-criss-cross deletions and $t$-criss-cross insertions and show that a code correcting $t$-criss-cross insertions/deletions has redundancy at least $tn + t log n - log(t!)$. Then, we present an existential construction of $t$-criss-cross insertion/deletion correcting code with redundancy bounded from above by $tn + mathcal{O}(t^2 log^2 n)$. The main ingredients of the presented code construction are systematic binary $t$-deletion correcting codes and Gabidulin codes. The first ingredient helps locating the indices of the inserted/deleted rows and columns, thus transforming the insertion/deletion-correction problem into a row/column erasure-correction problem which is then solved using the second ingredient.
Entanglement-assisted quantum error correcting codes (EAQECCs) constructed from Reed-Solomon codes and BCH codes are considered in this work. It is provided a complete and explicit formula for the parameters of EAQECCs coming from any Reed-Solomon co de, for the Hermitian metric, and from any BCH code with extension degree $2$ and consecutive cyclotomic cosets, for both the Euclidean and the Hermitian metric. The main task in this work is the computation of a completely general formula for $c$, the minimum number of required maximally entangled quantum states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا