ﻻ يوجد ملخص باللغة العربية
Entanglement-assisted quantum error correcting codes (EAQECCs) constructed from Reed-Solomon codes and BCH codes are considered in this work. It is provided a complete and explicit formula for the parameters of EAQECCs coming from any Reed-Solomon code, for the Hermitian metric, and from any BCH code with extension degree $2$ and consecutive cyclotomic cosets, for both the Euclidean and the Hermitian metric. The main task in this work is the computation of a completely general formula for $c$, the minimum number of required maximally entangled quantum states.
The concept of asymmetric entanglement-assisted quantum error-correcting code (asymmetric EAQECC) is introduced in this article. Codes of this type take advantage of the asymmetry in quantum errors since phase-shift errors are more probable than qudi
We prove that the known formulae for computing the optimal number of maximally entangled pairs required for entanglement-assisted quantum error-correcting codes (EAQECCs) over the binary field hold for codes over arbitrary finite fields as well. We a
Recently, Galindo et al. introduced the concept of asymmetric entanglement-assisted quantum error-correcting codes (AEAQECCs) from Calderbank-Shor-Steane (CSS) construction. In general, its difficult to determine the required number of maximally enta
We study entanglement-assisted quantum error-correcting codes (EAQECCs) arising from classical one-point algebraic geometry codes from the Hermitian curve with respect to the Hermitian inner product. Their only unknown parameter is $c$, the number of
Entanglement-assisted quantum error-correcting codes (EAQECCs) make use of pre-existing entanglement between the sender and receiver to boost the rate of transmission. It is possible to construct an EAQECC from any classical linear code, unlike stand