ترغب بنشر مسار تعليمي؟ اضغط هنا

Globally Optimal Beamforming for Rate Splitting Multiple Access

153   0   0.0 ( 0 )
 نشر من قبل Bho Matthiesen
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider globally optimal precoder design for rate splitting multiple access in Gaussian multiple-input single-output downlink channels with respect to weighted sum rate and energy efficiency maximization. The proposed algorithm solves an instance of the joint multicast and unicast beamforming problem and includes multicast- and unicast-only beamforming as special cases. Numerical results show that it outperforms state-of-the-art algorithms in terms of numerical stability and converges almost twice as fast.



قيم البحث

اقرأ أيضاً

Rate-splitting multiple access (RSMA) is a promising technique for downlink multi-antenna communications owning to its capability of enhancing the system performance in a wide range of network loads, user deployments and channel state information at the transmitter (CSIT) inaccuracies. In this paper, we investigate the achievable rate performance of RSMA in a multi-user multiple-input single-output (MU-MISO) network where only slow-varying statistical channel state information (CSI) is available at the transmitter. RSMA-based statistical beamforming and the split of the common stream is optimized with the objective of maximizing the minimum user rate subject to a sum power budget of the transmitter. Two statistical CSIT scenarios are investigated, namely the Rayleigh fading channels with only spatial correlations known at the transmitter, and the uniform linear array (ULA) deployment with only channel amplitudes and mean of phase known at the transmitter. Numerical results demonstrate the explicit max min fairness (MMF) rate gain of RSMA over space division multiple access (SDMA) in both scenarios. Moreover, we demonstrate that RSMA is more robust to the inaccuracy of statistical CSIT.
83 - Yuwei Li , Wanli Ni , Hui Tian 2020
This paper investigates the problem of resource allocation for joint communication and radar sensing system on rate-splitting multiple access (RSMA) based unmanned aerial vehicle (UAV) system. UAV simultaneously communicates with multiple users and p robes signals to targets of interest to exploit cooperative sensing ability and achieve substantial gains in size, cost and power consumption. By virtue of using linearly precoded rate splitting at the transmitter and successive interference cancellation at the receivers, RSMA is introduced as a promising paradigm to manage interference as well as enhance spectrum and energy efficiency. To maximize the energy efficiency of UAV networks, the deployment location and the beamforming matrix are jointly optimized under the constraints of power budget, transmission rate and approximation error. To solve the formulated non-convex problem efficiently, we decompose it into the UAV deployment subproblem and the beamforming optimization subproblem. Then, we invoke the successive convex approximation and difference-of-convex programming as well as Dinkelbach methods to transform the intractable subproblems into convex ones at each iteration. Next, an alternating algorithm is designed to solve the non-linear and non-convex problem in an efficient manner, while the corresponding complexity is analyzed as well. Finally, simulation results reveal that proposed algorithm with RSMA is superior to orthogonal multiple access and power-domain non-orthogonal multiple access in terms of power consumption and energy efficiency.
Rate-Splitting Multiple Access (RSMA) has recently appeared as a powerful and robust multiple access and interference management strategy for downlink Multi-user (MU) multi-antenna communications. In this work, we study the precoder design problem fo r RSMA scheme in downlink MU systems with both perfect and imperfect Channel State Information at the Transmitter (CSIT) and assess the role and benefits of transmitting multiple common streams. Unlike existing works which have considered single-antenna receivers (Multiple-Input Single-Output--MISO), we propose and extend the RSMA framework for multi-antenna receivers (Multiple-Input Multiple-Output--MIMO) and formulate the precoder optimization problem with the aim of maximizing the Weighted Ergodic Sum-Rate (WESR). Precoder optimization is solved using Sample Average Approximation (SAA) together with the proposed vectorization and Weighted Minimum Mean Square Error (WMMSE) based approach. Achievable sum-Degree of Freedom (DoF) of RSMA is derived for the proposed framework as an increasing function of the number of transmitted common and private streams, which is further validated by the Ergodic Sum Rate (ESR) performance using Monte Carlo simulations. Conventional MU-MIMO based on linear precoders and Non-Orthogonal Multiple Access (NOMA) schemes are considered as baselines. Numerical results show that with imperfect CSIT, the sum-DoF and ESR performance of RSMA is superior than that of the two baselines, and is increasing with the number of transmitted common streams. Moreover, by better managing the interference, RSMA not only has significant ESR gains over baseline schemes but is more robust to CSIT inaccuracies, network loads and user deployments.
145 - Shuai Ma , Hui Zhou , Yijie Mao 2021
This paper addresses robust beamforming design for rate splitting multiple access (RSMA)-aided multiple-input single-output (MISO) visible light communication (VLC) networks. In particular, since the channel capacity of VLC is yet unknown, we derive the first theoretical bound of channel capacity of RSMA-aided VLC networks, i.e., achievable rates with closed-form expressions. For the perfect channel state information (CSI) scenario, we investigate the beamforming design to minimize the transmitted power of RSMA-aided VLC networks under the quality of service (QoS) constraint of each user and the optical power constraints, and propose a constrained-convex-concave programming (CCCP)-based beamforming design algorithm to obtain high-quality beamformers. Moreover, for the imperfect CSI scenario, we propose a robust CCCP-based beamforming design scheme for RSMA-aided VLC networks by exploiting semidefinite relaxation (SDR) technique and S-lemma. Numerical results show that the proposed RSMA schemes offer a significant spectral efficiency gain over the existing space-division multiple access (SDMA) scheme and non-orthogonal multiple access (NOMA) scheme.
A novel rate splitting space division multiple access (SDMA) scheme based on grouped code index modulation (GrCIM) is proposed for the sixth generation (6G) downlink transmission. The proposed RSMA-GrCIM scheme transmits information to multiple user equipments (UEs) through the space division multiple access (SDMA) technique, and exploits code index modulation for rate splitting. Since the CIM scheme conveys information bits via the index of the selected Walsh code and binary phase shift keying (BPSK) signal, our RSMA scheme transmits the private messages of each user through the indices, and the common messages via the BPSK signal. Moreover, the Walsh code set is grouped into several orthogonal subsets to eliminate the interference from other users. A maximum likelihood (ML) detector is used to recovery the source bits, and a mathematical analysis is provided for the upper bound bit error ratio (BER) of each user. Comparisons are also made between our proposed scheme and the traditional SDMA scheme in spectrum utilization, number of available UEs, etc. Numerical results are given to verify the effectiveness of the proposed SDMA-GrCIM scheme.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا