ﻻ يوجد ملخص باللغة العربية
Synthetic aperture sonar (SAS) image reconstruction, or beamforming as it is often referred to within the SAS community, comprises a class of computationally intensive algorithms for creating coherent high-resolution imagery from successive spatially varying sonar pings. Image reconstruction is usually performed topside because of the large compute burden necessitated by the procedure. Historically, image reconstruction required significant assumptions in order to produce real-time imagery within an unmanned underwater vehicles (UUVs) size, weight, and power (SWaP) constraints. However, these assumptions result in reduced image quality. In this work, we describe ASASIN, the Advanced Synthetic Aperture Sonar Imagining eNgine. ASASIN is a time domain backprojection image reconstruction suite utilizing graphics processing units (GPUs) allowing real-time operation on UUVs without sacrificing image quality. We describe several speedups employed in ASASIN allowing us to achieve this objective. Furthermore, ASASINs signal processing chain is capable of producing 2D and 3D SAS imagery as we will demonstrate. Finally, we measure ASASINs performance on a variety of GPUs and create a model capable of predicting performance. We demonstrate our models usefulness in predicting run-time performance on desktop and embedded GPU hardware.
Recent progress in synthetic aperture sonar (SAS) technology and processing has led to significant advances in underwater imaging, outperforming previously common approaches in both accuracy and efficiency. There are, however, inherent limitations to
We propose a novel approach to handling the ambiguity in elevation angle associated with the observations of a forward looking multi-beam imaging sonar, and the challenges it poses for performing an accurate 3D reconstruction. We utilize a pair of so
We consider a synthetic aperture imaging configuration, such as synthetic aperture radar (SAR), where we want to first separate reflections from moving targets from those coming from a stationary background, and then to image separately the moving an
Although deep learning has achieved great success in image classification tasks, its performance is subject to the quantity and quality of training samples. For classification of polarimetric synthetic aperture radar (PolSAR) images, it is nearly imp
Synthetic Aperture Radar (SAR) imaging systems operate by emitting radar signals from a moving object, such as a satellite, towards the target of interest. Reflected radar echoes are received and later used by image formation algorithms to form a SAR