ترغب بنشر مسار تعليمي؟ اضغط هنا

Fermion mass hierarchies from vector-like families with an extended 2HDM and a possible explanation for the electron and muon anomalous magnetic moments

232   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study an extended 2 Higgs doublet model (2HDM) in which the Standard Model (SM) Yukawa interactions are forbidden due to a global $U(1)^prime$ symmetry, but may arise via mixing with vector-like families. In this model, the hierarchical structure of Yukawa couplings of quarks and leptons in the SM arises from the heavy masses of the fourth and fifth vector-like families. Within this model, we consider various non-standard contributions to the electron and muon anomalous magnetic moments. We first consider the $W$ exchange at one-loop level, consistent with the $mu rightarrow e gamma$ constraint, and show that it yields a negligible contribution to both electron and muon anomalous magnetic moments. We then consider Higgs scalar exchange, together with vector-like leptons, at one-loop level and show that it is possible to have non-standard contributions to the electron and muon anomalous magnetic moments within the $1sigma$ constraint of certain experiments. We present some benchmark points for both the muon and the electron anomalies, together with some numerical scans around these points, which indicate the mass regions of the Higgs scalars of the 2HDM in this scenario.

قيم البحث

اقرأ أيضاً

We propose a renormalizable theory with minimal particle content and symmetries, that successfully explains the number of Standard Model (SM) fermion families, the SM fermion mass hierarchy, the tiny values for the light active neutrino masses, the l epton and baryon asymmetry of the Universe, the dark matter relic density as well as the muon and electron anomalous magnetic moments. In the proposed model, the top quark and the exotic fermions do acquire tree-level masses whereas the SM charged fermions lighter than the top quark gain one-loop level masses. Besides that, the tiny masses for the light active neutrino are generated from an inverse seesaw mechanism at one-loop level.
The anomalous magnetic moments of the electron and the muon are interesting observables, since they can be measured with great precision and their values can be computed with excellent accuracy within the Standard Model (SM). The current experimental measurement of this quantities show a deviation of a few standard deviations with respect to the SM prediction, which may be a hint of new physics. The fact that the electron and the muon masses differ by two orders of magnitude and the deviations have opposite signs makes it difficult to find a common origin of these anomalies. In this work we introduce a complex singlet scalar charged under a Peccei-Quinn-like (PQ) global symmetry together with the electron transforming chirally under the same symmetry. In this realization, the CP-odd scalar couples to electron only, while the CP-even part can couple to muons and electrons simultaneously. In addition, the CP-odd scalar can naturally be much lighter than the CP-even scalar, as a pseudo-Goldstone boson of the PQ-like symmetry, leading to an explanation of the suppression of the electron anomalous magnetic moment with respect to the SM prediction due to the CP-odd Higgs effect dominance, as well as an enhancement of the muon one induced by the CP-even component.
We propose a predictive $Q_4$ flavored 2HDM model, where the scalar sector is enlarged by the inclusion of several gauge singlet scalars and the fermion sector by the inclusion of right handed Majorana neutrinos. In our model, the $Q_4$ family symmet ry is supplemented by several auxiliary cyclic symmetries, whose spontaneous breaking produces the observed pattern of SM charged fermion masses and quark mixing angles. The light active neutrino masses are generated from an inverse seesaw mechanism at one loop level thanks to a remnant preserved $Z_2$ symmetry. Our model succesfully reproduces the measured dark matter relic abundance only for masses of the DM candidate below $sim$ 0.8 TeV. Furthermore, our model is also consistent with the lepton and baryon asymmetries of the Universe as well as with the muon anomalous magnetic moment.
53 - M. Passera 2007
Recent Standard Model predictions for the anomalous magnetic moments of the electron, muon and tau lepton are reviewed and compared to the latest experimental values.
We propose simple models with a flavor-dependent global $U(1)_ell$ and a discrete $mathbb{Z}_2$ symmetries to explain the anomalies in the measured anomalous magnetic dipole moments of muon and electron, $(g-2)_{mu,e}$, while simultaneously accommoda ting a dark matter candidate. These new symmetries are introduced not only to avoid the dangerous lepton flavor-violating decays of charged leptons, but also to ensure the stability of the dark matter. Our models can realize the opposite-sign contributions to the muon and electron $g-2$ via one-loop diagrams involving new vector-like leptons. Under the vacuum stability and perturbative unitarity bounds as well as the constraints from the dark matter direct searches and related LHC data, we find suitable parameter space to simultaneously explain $(g-2)_{mu,e}$ and the relic density. In this parameter space, the coupling of the Higgs boson with muons can be enhanced by up to $sim 38%$ from its Standard Model value, which can be tested in future collider experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا