ﻻ يوجد ملخص باللغة العربية
We propose a renormalizable theory with minimal particle content and symmetries, that successfully explains the number of Standard Model (SM) fermion families, the SM fermion mass hierarchy, the tiny values for the light active neutrino masses, the lepton and baryon asymmetry of the Universe, the dark matter relic density as well as the muon and electron anomalous magnetic moments. In the proposed model, the top quark and the exotic fermions do acquire tree-level masses whereas the SM charged fermions lighter than the top quark gain one-loop level masses. Besides that, the tiny masses for the light active neutrino are generated from an inverse seesaw mechanism at one-loop level.
We present a model that gives a natural explanation to the charged lepton mass hierarchy and study the contributions to the electron and the muon $g-2$. In the model, we introduce lepton-flavor-dependent $U(1)_F$ symmetry and three additional Higgs d
We study the minimal scotogenic model constituting an additional inert Higgs doublet and three sets of right-handed neutrinos. The scotogenic model connects dark matter, baryon asymmetry of the Universe and neutrino oscillation data. In our work, we
The anomalous magnetic moments of the electron and the muon are interesting observables, since they can be measured with great precision and their values can be computed with excellent accuracy within the Standard Model (SM). The current experimental
In a simple extension of the standard model (SM), a pair of vector like lepton doublets ($L_1$ and $L_2$) and a $SU(2)_L$ scalar doublet ($eta$) have been introduced to help in accommodating the discrepancy in determination of the anomalous magnetic
We study an extended 2 Higgs doublet model (2HDM) in which the Standard Model (SM) Yukawa interactions are forbidden due to a global $U(1)^prime$ symmetry, but may arise via mixing with vector-like families. In this model, the hierarchical structure