ﻻ يوجد ملخص باللغة العربية
We propose a simple model selection approach for algorithms in stochastic bandit and reinforcement learning problems. As opposed to prior work that (implicitly) assumes knowledge of the optimal regret, we only require that each base algorithm comes with a candidate regret bound that may or may not hold during all rounds. In each round, our approach plays a base algorithm to keep the candidate regret bounds of all remaining base algorithms balanced, and eliminates algorithms that violate their candidate bound. We prove that the total regret of this approach is bounded by the best valid candidate regret bound times a multiplicative factor. This factor is reasonably small in several applications, including linear bandits and MDPs with nested function classes, linear bandits with unknown misspecification, and LinUCB applied to linear bandits with different confidence parameters. We further show that, under a suitable gap-assumption, this factor only scales with the number of base algorithms and not their complexity when the number of rounds is large enough. Finally, unlike recent efforts in model selection for linear stochastic bandits, our approach is versatile enough to also cover cases where the context information is generated by an adversarial environment, rather than a stochastic one.
The question of how to explore, i.e., take actions with uncertain outcomes to learn about possible future rewards, is a key question in reinforcement learning (RL). Here, we show a surprising result: We show that Q-learning with nonlinear Q-function
We revisit the classic regret-minimization problem in the stochastic multi-armed bandit setting when the arm-distributions are allowed to be heavy-tailed. Regret minimization has been well studied in simpler settings of either bounded support reward
This paper analyses the problem of Gaussian process (GP) bandits with deterministic observations. The analysis uses a branch and bound algorithm that is related to the UCB algorithm of (Srinivas et al., 2010). For GPs with Gaussian observation noise,
In order to meet the diverse challenges in solving many real-world problems, an intelligent agent has to be able to dynamically construct a model of its environment. Objects facilitate the modular reuse of prior knowledge and the combinatorial constr
Many real world tasks exhibit rich structure that is repeated across different parts of the state space or in time. In this work we study the possibility of leveraging such repeated structure to speed up and regularize learning. We start from the KL