ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonparametric Estimation of Repeated Densities with Heterogeneous Sample Sizes

159   0   0.0 ( 0 )
 نشر من قبل Jiaming Qiu
 تاريخ النشر 2020
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the estimation of densities in multiple subpopulations, where the available sample size in each subpopulation greatly varies. This problem occurs in epidemiology, for example, where different diseases may share similar pathogenic mechanism but differ in their prevalence. Without specifying a parametric form, our proposed method pools information from the population and estimate the density in each subpopulation in a data-driven fashion. Drawing from functional data analysis, low-dimensional approximating density families in the form of exponential families are constructed from the principal modes of variation in the log-densities. Subpopulation densities are subsequently fitted in the approximating families based on likelihood principles and shrinkage. The approximating families increase in their flexibility as the number of components increases and can approximate arbitrary infinite-dimensional densities. We also derive convergence results of the density estimates with discrete observations. The proposed methods are shown to be interpretable and efficient in simulation as well as applications to electronic medical record and rainfall data.

قيم البحث

اقرأ أيضاً

The simultaneous estimation of many parameters $eta_i$, based on a corresponding set of observations $x_i$, for $i=1,ldots, n$, is a key research problem that has received renewed attention in the high-dimensional setting. %The classic example involv es estimating a vector of normal means $mu_i$ subject to a fixed variance term $sigma^2$. However, Many practical situations involve heterogeneous data $(x_i, theta_i)$ where $theta_i$ is a known nuisance parameter. Effectively pooling information across samples while correctly accounting for heterogeneity presents a significant challenge in large-scale estimation problems. We address this issue by introducing the Nonparametric Empirical Bayes Smoothing Tweedie (NEST) estimator, which efficiently estimates $eta_i$ and properly adjusts for heterogeneity %by approximating the marginal density of the data $f_{theta_i}(x_i)$ and applying this density to via a generalized version of Tweedies formula. NEST is capable of handling a wider range of settings than previously proposed heterogeneous approaches as it does not make any parametric assumptions on the prior distribution of $eta_i$. The estimation framework is simple but general enough to accommodate any member of the exponential family of distributions. %; a thorough study of the normal means problem subject to heterogeneous variances is presented to illustrate the proposed framework. Our theoretical results show that NEST is asymptotically optimal, while simulation studies show that it outperforms competing methods, with substantial efficiency gains in many settings. The method is demonstrated on a data set measuring the performance gap in math scores between socioeconomically advantaged and disadvantaged students in K-12 schools.
Conditional density estimation generalizes regression by modeling a full density f(yjx) rather than only the expected value E(yjx). This is important for many tasks, including handling multi-modality and generating prediction intervals. Though fundam ental and widely applicable, nonparametric conditional density estimators have received relatively little attention from statisticians and little or none from the machine learning community. None of that work has been applied to greater than bivariate data, presumably due to the computational difficulty of data-driven bandwidth selection. We describe the double kernel conditional density estimator and derive fast dual-tree-based algorithms for bandwidth selection using a maximum likelihood criterion. These techniques give speedups of up to 3.8 million in our experiments, and enable the first applications to previously intractable large multivariate datasets, including a redshift prediction problem from the Sloan Digital Sky Survey.
We propose a new method for changepoint estimation in partially-observed, high-dimensional time series that undergo a simultaneous change in mean in a sparse subset of coordinates. Our first methodological contribution is to introduce a MissCUSUM tra nsformation (a generalisation of the popular Cumulative Sum statistics), that captures the interaction between the signal strength and the level of missingness in each coordinate. In order to borrow strength across the coordinates, we propose to project these MissCUSUM statistics along a direction found as the solution to a penalised optimisation problem tailored to the specific sparsity structure. The changepoint can then be estimated as the location of the peak of the absolute value of the projected univariate series. In a model that allows different missingness probabilities in different component series, we identify that the key interaction between the missingness and the signal is a weighted sum of squares of the signal change in each coordinate, with weights given by the observation probabilities. More specifically, we prove that the angle between the estimated and oracle projection directions, as well as the changepoint location error, are controlled with high probability by the sum of two terms, both involving this weighted sum of squares, and representing the error incurred due to noise and the error due to missingness respectively. A lower bound confirms that our changepoint estimator, which we call MissInspect, is optimal up to a logarithmic factor. The striking effectiveness of the MissInspect methodology is further demonstrated both on simulated data, and on an oceanographic data set covering the Neogene period.
We introduce a new nonparametric density estimator inspired by Markov Chains, and generalizing the well-known Kernel Density Estimator (KDE). Our estimator presents several benefits with respect to the usual ones and can be used straightforwardly as a foundation in all density-based algorithms. We prove the consistency of our estimator and we find it typically outperforms KDE in situations of large sample size and high dimensionality. We also employ our density estimator to build a local outlier detector, showing very promising results when applied to some realistic datasets.
We consider the nonparametric estimation of an S-shaped regression function. The least squares estimator provides a very natural, tuning-free approach, but results in a non-convex optimisation problem, since the inflection point is unknown. We show t hat the estimator may nevertheless be regarded as a projection onto a finite union of convex cones, which allows us to propose a mixed primal-dual bases algorithm for its efficient, sequential computation. After developing a projection framework that demonstrates the consistency and robustness to misspecification of the estimator, our main theoretical results provide sharp oracle inequalities that yield worst-case and adaptive risk bounds for the estimation of the regression function, as well as a rate of convergence for the estimation of the inflection point. These results reveal not only that the estimator achieves the minimax optimal rate of convergence for both the estimation of the regression function and its inflection point (up to a logarithmic factor in the latter case), but also that it is able to achieve an almost-parametric rate when the true regression function is piecewise affine with not too many affine pieces. Simulations and a real data application to air pollution modelling also confirm the desirable finite-sample properties of the estimator, and our algorithm is implemented in the R package Sshaped.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا