ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonparametric, tuning-free estimation of S-shaped functions

162   0   0.0 ( 0 )
 نشر من قبل Oliver Feng
 تاريخ النشر 2021
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the nonparametric estimation of an S-shaped regression function. The least squares estimator provides a very natural, tuning-free approach, but results in a non-convex optimisation problem, since the inflection point is unknown. We show that the estimator may nevertheless be regarded as a projection onto a finite union of convex cones, which allows us to propose a mixed primal-dual bases algorithm for its efficient, sequential computation. After developing a projection framework that demonstrates the consistency and robustness to misspecification of the estimator, our main theoretical results provide sharp oracle inequalities that yield worst-case and adaptive risk bounds for the estimation of the regression function, as well as a rate of convergence for the estimation of the inflection point. These results reveal not only that the estimator achieves the minimax optimal rate of convergence for both the estimation of the regression function and its inflection point (up to a logarithmic factor in the latter case), but also that it is able to achieve an almost-parametric rate when the true regression function is piecewise affine with not too many affine pieces. Simulations and a real data application to air pollution modelling also confirm the desirable finite-sample properties of the estimator, and our algorithm is implemented in the R package Sshaped.

قيم البحث

اقرأ أيضاً

The assumption of separability of the covariance operator for a random image or hypersurface can be of substantial use in applications, especially in situations where the accurate estimation of the full covariance structure is unfeasible, either for computational reasons, or due to a small sample size. However, inferential tools to verify this assumption are somewhat lacking in high-dimensional or functional {data analysis} settings, where this assumption is most relevant. We propose here to test separability by focusing on $K$-dimensional projections of the difference between the covariance operator and a nonparametric separable approximation. The subspace we project onto is one generated by the eigenfunctions of the covariance operator estimated under the separability hypothesis, negating the need to ever estimate the full non-separable covariance. We show that the rescaled difference of the sample covariance operator with its separable approximation is asymptotically Gaussian. As a by-product of this result, we derive asymptotically pivotal tests under Gaussian assumptions, and propose bootstrap methods for approximating the distribution of the test statistics. We probe the finite sample performance through simulations studies, and present an application to log-spectrogram images from a phonetic linguistics dataset.
In this paper, a nonparametric maximum likelihood (ML) estimator for band-limited (BL) probability density functions (pdfs) is proposed. The BLML estimator is consistent and computationally efficient. To compute the BLML estimator, three approximate algorithms are presented: a binary quadratic programming (BQP) algorithm for medium scale problems, a Trivial algorithm for large-scale problems that yields a consistent estimate if the underlying pdf is strictly positive and BL, and a fast implementation of the Trivial algorithm that exploits the band-limited assumption and the Nyquist sampling theorem (BLMLQuick). All three BLML estimators outperform kernel density estimation (KDE) algorithms (adaptive and higher order KDEs) with respect to the mean integrated squared error for data generated from both BL and infinite-band pdfs. Further, the BLMLQuick estimate is remarkably faster than the KD algorithms. Finally, the BLML method is applied to estimate the conditional intensity function of a neuronal spike train (point process) recorded from a rats entorhinal cortex grid cell, for which it outperforms state-of-the-art estimators used in neuroscience.
Distribution function is essential in statistical inference, and connected with samples to form a directed closed loop by the correspondence theorem in measure theory and the Glivenko-Cantelli and Donsker properties. This connection creates a paradig m for statistical inference. However, existing distribution functions are defined in Euclidean spaces and no longer convenient to use in rapidly evolving data objects of complex nature. It is imperative to develop the concept of distribution function in a more general space to meet emerging needs. Note that the linearity allows us to use hypercubes to define the distribution function in a Euclidean space, but without the linearity in a metric space, we must work with the metric to investigate the probability measure. We introduce a class of metric distribution functions through the metric between random objects and a fixed location in metric spaces. We overcome this challenging step by proving the correspondence theorem and the Glivenko-Cantelli theorem for metric distribution functions in metric spaces that lie the foundation for conducting rational statistical inference for metric space-valued data. Then, we develop homogeneity test and mutual independence test for non-Euclidean random objects, and present comprehensive empirical evidence to support the performance of our proposed methods.
Causal mediation analysis has historically been limited in two important ways: (i) a focus has traditionally been placed on binary treatments and static interventions, and (ii) direct and indirect effect decompositions have been pursued that are only identifiable in the absence of intermediate confounders affected by treatment. We present a theoretical study of an (in)direct effect decomposition of the population intervention effect, defined by stochastic interventions jointly applied to the treatment and mediators. In contrast to existing proposals, our causal effects can be evaluated regardless of whether a treatment is categorical or continuous and remain well-defined even in the presence of intermediate confounders affected by treatment. Our (in)direct effects are identifiable without a restrictive assumption on cross-world counterfactual independencies, allowing for substantive conclusions drawn from them to be validated in randomized controlled trials. Beyond the novel effects introduced, we provide a careful study of nonparametric efficiency theory relevant for the construction of flexible, multiply robust estimators of our (in)direct effects, while avoiding undue restrictions induced by assuming parametric models of nuisance parameter functionals. To complement our nonparametric estimation strategy, we introduce inferential techniques for constructing confidence intervals and hypothesis tests, and discuss open source software implementing the proposed methodology.
Heterogeneity is often natural in many contemporary applications involving massive data. While posing new challenges to effective learning, it can play a crucial role in powering meaningful scientific discoveries through the understanding of importan t differences among subpopulations of interest. In this paper, we exploit multiple networks with Gaussian graphs to encode the connectivity patterns of a large number of features on the subpopulations. To uncover the heterogeneity of these structures across subpopulations, we suggest a new framework of tuning-free heterogeneity pursuit (THP) via large-scale inference, where the number of networks is allowed to diverge. In particular, two new tests, the chi-based test and the linear functional-based test, are introduced and their asymptotic null distributions are established. Under mild regularity conditions, we establish that both tests are optimal in achieving the testable region boundary and the sample size requirement for the latter test is minimal. Both theoretical guarantees and the tuning-free feature stem from efficient multiple-network estimation by our newly suggested approach of heterogeneous group square-root Lasso (HGSL) for high-dimensional multi-response regression with heterogeneous noises. To solve this convex program, we further introduce a tuning-free algorithm that is scalable and enjoys provable convergence to the global optimum. Both computational and theoretical advantages of our procedure are elucidated through simulation and real data examples.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا