ﻻ يوجد ملخص باللغة العربية
Observations from the Juno and Cassini missions provide essential constraints on the internal structures and compositions of Jupiter and Saturn, resulting in profound revisions of our understanding of the interior and atmospheres of Gas Giant planets. The next step to understand planetary origins in our Solar System requires a mission to their Ice Giant siblings, Uranus and Neptune.
Interior models of giant planets traditionally assume that at a given radius (i.e. pressure) the density should be larger than or equal to the one corresponding to a homogeneous, adiabatic stratification throughout the planet (referred to as the oute
Transition discs are expected to be a natural outcome of the interplay between photoevaporation (PE) and giant planet formation. Massive planets reduce the inflow of material from the outer to the inner disc, therefore triggering an earlier onset of
Astronomers have discovered thousands of planets outside the solar system, most of which orbit stars that will eventually evolve into red giants and then into white dwarfs. During the red giant phase, any close-orbiting planets will be engulfed by th
It is still being debated whether the well-known metallicity - giant planet correlation for dwarf stars is also valid for giant stars. For this reason, having precise metallicities is very important. Different methods can provide different results th
The detection of a dust disc around G29-38 and transits from debris orbiting WD1145+017 confirmed that the photospheric trace metals found in many white dwarfs arise from the accretion of tidally disrupted planetesimals. The composition of these plan