ترغب بنشر مسار تعليمي؟ اضغط هنا

Neural-Swarm2: Planning and Control of Heterogeneous Multirotor Swarms using Learned Interactions

324   0   0.0 ( 0 )
 نشر من قبل Guanya Shi
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present Neural-Swarm2, a learning-based method for motion planning and control that allows heterogeneous multirotors in a swarm to safely fly in close proximity. Such operation for drones is challenging due to complex aerodynamic interaction forces, such as downwash generated by nearby drones and ground effect. Conventional planning and control methods neglect capturing these interaction forces, resulting in sparse swarm configuration during flight. Our approach combines a physics-based nominal dynamics model with learned Deep Neural Networks (DNNs) with strong Lipschitz properties. We make use of two techniques to accurately predict the aerodynamic interactions between heterogeneous multirotors: i) spectral normalization for stability and generalization guarantees of unseen data and ii) heterogeneous deep sets for supporting any number of heterogeneous neighbors in a permutation-invariant manner without reducing expressiveness. The learned residual dynamics benefit both the proposed interaction-aware multi-robot motion planning and the nonlinear tracking control design because the learned interaction forces reduce the modelling errors. Experimental results demonstrate that Neural-Swarm2 is able to generalize to larger swarms beyond training cases and significantly outperforms a baseline nonlinear tracking controller with up to three times reduction in worst-case tracking errors.

قيم البحث

اقرأ أيضاً

In this paper, we present Neural-Swarm, a nonlinear decentralized stable controller for close-proximity flight of multirotor swarms. Close-proximity control is challenging due to the complex aerodynamic interaction effects between multirotors, such a s downwash from higher vehicles to lower ones. Conventional methods often fail to properly capture these interaction effects, resulting in controllers that must maintain large safety distances between vehicles, and thus are not capable of close-proximity flight. Our approach combines a nominal dynamics model with a regularized permutation-invariant Deep Neural Network (DNN) that accurately learns the high-order multi-vehicle interactions. We design a stable nonlinear tracking controller using the learned model. Experimental results demonstrate that the proposed controller significantly outperforms a baseline nonlinear tracking controller with up to four times smaller worst-case height tracking errors. We also empirically demonstrate the ability of our learned model to generalize to larger swarm sizes.
Simulation-to-real transfer is an important strategy for making reinforcement learning practical with real robots. Successful sim-to-real transfer systems have difficulty producing policies which generalize across tasks, despite training for thousand s of hours equivalent real robot time. To address this shortcoming, we present a novel approach to efficiently learning new robotic skills directly on a real robot, based on model-predictive control (MPC) and an algorithm for learning task representations. In short, we show how to reuse the simulation from the pre-training step of sim-to-real methods as a tool for foresight, allowing the sim-to-real policy adapt to unseen tasks. Rather than end-to-end learning policies for single tasks and attempting to transfer them, we first use simulation to simultaneously learn (1) a continuous parameterization (i.e. a skill embedding or latent) of task-appropriate primitive skills, and (2) a single policy for these skills which is conditioned on this representation. We then directly transfer our multi-skill policy to a real robot, and actuate the robot by choosing sequences of skill latents which actuate the policy, with each latent corresponding to a pre-learned primitive skill controller. We complete unseen tasks by choosing new sequences of skill latents to control the robot using MPC, where our MPC model is composed of the pre-trained skill policy executed in the simulation environment, run in parallel with the real robot. We discuss the background and principles of our method, detail its practical implementation, and evaluate its performance by using our method to train a real Sawyer Robot to achieve motion tasks such as drawing and block pushing.
Precise near-ground trajectory control is difficult for multi-rotor drones, due to the complex aerodynamic effects caused by interactions between multi-rotor airflow and the environment. Conventional control methods often fail to properly account for these complex effects and fall short in accomplishing smooth landing. In this paper, we present a novel deep-learning-based robust nonlinear controller (Neural Lander) that improves control performance of a quadrotor during landing. Our approach combines a nominal dynamics model with a Deep Neural Network (DNN) that learns high-order interactions. We apply spectral normalization (SN) to constrain the Lipschitz constant of the DNN. Leveraging this Lipschitz property, we design a nonlinear feedback linearization controller using the learned model and prove system stability with disturbance rejection. To the best of our knowledge, this is the first DNN-based nonlinear feedback controller with stability guarantees that can utilize arbitrarily large neural nets. Experimental results demonstrate that the proposed controller significantly outperforms a Baseline Nonlinear Tracking Controller in both landing and cross-table trajectory tracking cases. We also empirically show that the DNN generalizes well to unseen data outside the training domain.
Robots will be expected to manipulate a wide variety of objects in complex and arbitrary ways as they become more widely used in human environments. As such, the rearrangement of objects has been noted to be an important benchmark for AI capabilities in recent years. We propose NeRP (Neural Rearrangement Planning), a deep learning based approach for multi-step neural object rearrangement planning which works with never-before-seen objects, that is trained on simulation data, and generalizes to the real world. We compare NeRP to several naive and model-based baselines, demonstrating that our approach is measurably better and can efficiently arrange unseen objects in fewer steps and with less planning time. Finally, we demonstrate it on several challenging rearrangement problems in the real world.
In this paper, we consider the problem of using a robot to explore an environment with an unknown, state-dependent disturbance function while avoiding some forbidden areas. The goal of the robot is to safely collect observations of the disturbance an d construct an accurate estimate of the underlying disturbance function. We use Gaussian Process (GP) to get an estimate of the disturbance from data with a high-confidence bound on the regression error. Furthermore, we use neural Contraction Metrics to derive a tracking controller and the corresponding high-confidence uncertainty tube around the nominal trajectory planned for the robot, based on the estimate of the disturbance. From the robustness of the Contraction Metric, error bound can be pre-computed and used by the motion planner such that the actual trajectory is guaranteed to be safe. As the robot collects more and more observations along its trajectory, the estimate of the disturbance becomes more and more accurate, which in turn improves the performance of the tracking controller and enlarges the free space that the robot can safely explore. We evaluate the proposed method using a carefully designed environment with a ground vehicle. Results show that with the proposed method the robot can thoroughly explore the environment safely and quickly.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا