ﻻ يوجد ملخص باللغة العربية
Forecasting has always been at the forefront of decision making and planning. The uncertainty that surrounds the future is both exciting and challenging, with individuals and organisations seeking to minimise risks and maximise utilities. The large number of forecasting applications calls for a diverse set of forecasting methods to tackle real-life challenges. This article provides a non-systematic review of the theory and the practice of forecasting. We provide an overview of a wide range of theoretical, state-of-the-art models, methods, principles, and approaches to prepare, produce, organise, and evaluate forecasts. We then demonstrate how such theoretical concepts are applied in a variety of real-life contexts. We do not claim that this review is an exhaustive list of methods and applications. However, we wish that our encyclopedic presentation will offer a point of reference for the rich work that has been undertaken over the last decades, with some key insights for the future of forecasting theory and practice. Given its encyclopedic nature, the intended mode of reading is non-linear. We offer cross-references to allow the readers to navigate through the various topics. We complement the theoretical concepts and applications covered by large lists of free or open-source software implementations and publicly-available databases.
Diabetes is a major public health challenge worldwide. Abnormal physiology in diabetes, particularly hypoglycemia, can cause driver impairments that affect safe driving. While diabetes driver safety has been previously researched, few studies link re
We review methods for monitoring multivariate time-between-events (TBE) data. We present some underlying complexities that have been overlooked in the literature. It is helpful to classify multivariate TBE monitoring applications into two fundamental
Nowadays, more and more clinical trials choose combinational agents as the intervention to achieve better therapeutic responses. However, dose-finding for combinational agents is much more complicated than single agent as the full order of combinatio
Some years ago, Snapinn and Jiang[1] considered the interpretation and pitfalls of absolute versus relative treatment effect measures in analyses of time-to-event outcomes. Through specific examples and analytical considerations based solely on the e
Uncertainty Quantification (UQ) is an essential step in computational model validation because assessment of the model accuracy requires a concrete, quantifiable measure of uncertainty in the model predictions. The concept of UQ in the nuclear commun