ﻻ يوجد ملخص باللغة العربية
In cryptography, we hope a sequence over $mathbb{Z}_m$ with period $N$ having larger $m$-adic complexity. Compared with the binary case, the computation of 4-adic complexity of knowing quaternary sequences has not been well developed. In this paper, we determine the 4-adic complexity of the quaternary cyclotomic sequences with period 2$p$ defined in [6]. The main method we utilized is a quadratic Gauss sum $G_{p}$ valued in $mathbb{Z}_{4^N-1}$ which can be seen as a version of classical quadratic Gauss sum. Our results show that the 4-adic complexity of this class of quaternary cyclotomic sequences reaches the maximum if $5 mid p-2$ and close to the maximum otherwise.
In this paper, we determine the 4-adic complexity of the balanced quaternary sequences of period $2p$ and $2(2^n-1)$ with ideal autocorrelation defined by Kim et al. (ISIT, pp. 282-285, 2009) and Jang et al. (ISIT, pp. 278-281, 2009), respectively. O
Via interleaving Ding-Helleseth-Lam sequences, a class of binary sequences of period $4p$ with optimal autocorrelation magnitude was constructed in cite{W. Su}. Later, Fan showed that the linear complexity of this class of sequences is quite good cit
A class of binary sequences with period $2p$ is constructed using generalized cyclotomic classes, and their linear complexity, minimal polynomial over ${mathbb{F}_{{q}}}$ as well as 2-adic complexity are determined using Gauss period and group ring t
The generalized cyclotomic binary sequences $S=S(a, b, c)$ with period $n=pq$ have good autocorrelation property where $(a, b, c)in {0, 1}^3$ and $p, q$ are distinct odd primes. For some cases, the sequences $S$ have ideal or optimal autocorrelation.
The autocorrelation values of two classes of binary sequences are shown to be good in [6]. We study the 2-adic complexity of these sequences. Our results show that the 2-adic complexity of such sequences is large enough to resist the attack of the rational approximation algorithm.