ﻻ يوجد ملخص باللغة العربية
In this paper, we determine the 4-adic complexity of the balanced quaternary sequences of period $2p$ and $2(2^n-1)$ with ideal autocorrelation defined by Kim et al. (ISIT, pp. 282-285, 2009) and Jang et al. (ISIT, pp. 278-281, 2009), respectively. Our results show that the 4-adic complexity of the quaternary sequences defined in these two papers is large enough to resist the attack of the rational approximation algorithm.
In cryptography, we hope a sequence over $mathbb{Z}_m$ with period $N$ having larger $m$-adic complexity. Compared with the binary case, the computation of 4-adic complexity of knowing quaternary sequences has not been well developed. In this paper,
Via interleaving Ding-Helleseth-Lam sequences, a class of binary sequences of period $4p$ with optimal autocorrelation magnitude was constructed in cite{W. Su}. Later, Fan showed that the linear complexity of this class of sequences is quite good cit
The generalized cyclotomic binary sequences $S=S(a, b, c)$ with period $n=pq$ have good autocorrelation property where $(a, b, c)in {0, 1}^3$ and $p, q$ are distinct odd primes. For some cases, the sequences $S$ have ideal or optimal autocorrelation.
A class of binary sequences with period $2p$ is constructed using generalized cyclotomic classes, and their linear complexity, minimal polynomial over ${mathbb{F}_{{q}}}$ as well as 2-adic complexity are determined using Gauss period and group ring t
We determine the 2-adic complexity of the Ding-Helleseth-Martinsen (DHM) binary sequences by using cyclotomic numbers of order four, Gauss periods and quadratic Gauss sum on finite field $mathbb{F}_q$ and valued in $mathbb{Z}_{2^N-1}$ where $q equiv