ﻻ يوجد ملخص باللغة العربية
The multilinear Pagerank model [Gleich, Lim and Yu, 2015] is a tensor-based generalization of the Pagerank model. Its computation requires solving a system of polynomial equations that contains a parameter $alpha in [0,1)$. For $alpha approx 1$, this computation remains a challenging problem, especially since the solution may be non-unique. Extrapolation strategies that start from smaller values of $alpha$ and `follow the solution by slowly increasing this parameter have been suggested; however, there are known cases where these strategies fail, because a globally continuous solution curve cannot be defined as a function of $alpha$. In this paper, we improve on this idea, by employing a predictor-corrector continuation algorithm based on a more general representation of the solutions as a curve in $mathbb{R}^{n+1}$. We prove several global properties of this curve that ensure the good behavior of the algorithm, and we show in our numerical experiments that this method is significantly more reliable than the existing alternatives.
We consider the multilinear pagerank problem studied in [Gleich, Lim and Yu, Multilinear Pagerank, 2015], which is a system of quadratic equations with stochasticity and nonnegativity constraints. We use the theory of quadratic vector equations to pr
In this paper, we propose a numerical method to solve the classic $L^2$-optimal transport problem. Our algorithm is based on use of multiple shooting, in combination with a continuation procedure, to solve the boundary value problem associated to the
We present a parallel computing strategy for a hybridizable discontinuous Galerkin (HDG) nested geometric multigrid (GMG) solver. Parallel GMG solvers require a combination of coarse-grain and fine-grain parallelism to improve time to solution perfor
This article deals with the efficient and accurate computation of the electrostatic forces between charged, spherical dielectric particles undergoing mutual polarisation. We use the spectral Galerkin boundary integral equation framework developed by
The paper is concerned with methods for computing the best low multilinear rank approximation of large and sparse tensors. Krylov-type methods have been used for this problem; here blo