ترغب بنشر مسار تعليمي؟ اضغط هنا

Layer-Wise Multi-View Learning for Neural Machine Translation

172   0   0.0 ( 0 )
 نشر من قبل Qiang Wang
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Traditional neural machine translation is limited to the topmost encoder layers context representation and cannot directly perceive the lower encoder layers. Existing solutions usually rely on the adjustment of network architecture, making the calculation more complicated or introducing additional structural restrictions. In this work, we propose layer-wise multi-view learning to solve this problem, circumventing the necessity to change the model structure. We regard each encoder layers off-the-shelf output, a by-product in layer-by-layer encoding, as the redundant view for the input sentence. In this way, in addition to the topmost encoder layer (referred to as the primary view), we also incorporate an intermediate encoder layer as the auxiliary view. We feed the two views to a partially shared decoder to maintain independent prediction. Consistency regularization based on KL divergence is used to encourage the two views to learn from each other. Extensive experimental results on five translation tasks show that our approach yields stable improvements over multiple strong baselines. As another bonus, our method is agnostic to network architectures and can maintain the same inference speed as the original model.



قيم البحث

اقرأ أيضاً

Existing curriculum learning approaches to Neural Machine Translation (NMT) require sampling sufficient amounts of easy samples from training data at the early training stage. This is not always achievable for low-resource languages where the amount of training data is limited. To address such limitation, we propose a novel token-wise curriculum learning approach that creates sufficient amounts of easy samples. Specifically, the model learns to predict a short sub-sequence from the beginning part of each target sentence at the early stage of training, and then the sub-sequence is gradually expanded as the training progresses. Such a new curriculum design is inspired by the cumulative effect of translation errors, which makes the latter tokens more difficult to predict than the beginning ones. Extensive experiments show that our approach can consistently outperform baselines on 5 language pairs, especially for low-resource languages. Combining our approach with sentence-level methods further improves the performance on high-resource languages.
Many multi-domain neural machine translation (NMT) models achieve knowledge transfer by enforcing one encoder to learn shared embedding across domains. However, this design lacks adaptation to individual domains. To overcome this limitation, we propo se a novel multi-domain NMT model using individual modules for each domain, on which we apply word-level, adaptive and layer-wise domain mixing. We first observe that words in a sentence are often related to multiple domains. Hence, we assume each word has a domain proportion, which indicates its domain preference. Then word representations are obtained by mixing their embedding in individual domains based on their domain proportions. We show this can be achieved by carefully designing multi-head dot-product attention modules for different domains, and eventually taking weighted averages of their parameters by word-level layer-wise domain proportions. Through this, we can achieve effective domain knowledge sharing, and capture fine-grained domain-specific knowledge as well. Our experiments show that our proposed model outperforms existing ones in several NMT tasks.
Conventional Neural Machine Translation (NMT) models benefit from the training with an additional agent, e.g., dual learning, and bidirectional decoding with one agent decoding from left to right and the other decoding in the opposite direction. In t his paper, we extend the training framework to the multi-agent scenario by introducing diverse agents in an interactive updating process. At training time, each agent learns advanced knowledge from others, and they work together to improve translation quality. Experimental results on NIST Chinese-English, IWSLT 2014 German-English, WMT 2014 English-German and large-scale Chinese-English translation tasks indicate that our approach achieves absolute improvements over the strong baseline systems and shows competitive performance on all tasks.
While monolingual data has been shown to be useful in improving bilingual neural machine translation (NMT), effectively and efficiently leveraging monolingual data for Multilingual NMT (MNMT) systems is a less explored area. In this work, we propose a multi-task learning (MTL) framework that jointly trains the model with the translation task on bitext data and two denoising tasks on the monolingual data. We conduct extensive empirical studies on MNMT systems with 10 language pairs from WMT datasets. We show that the proposed approach can effectively improve the translation quality for both high-resource and low-resource languages with large margin, achieving significantly better results than the individual bilingual models. We also demonstrate the efficacy of the proposed approach in the zero-shot setup for language pairs without bitext training data. Furthermore, we show the effectiveness of MTL over pre-training approaches for both NMT and cross-lingual transfer learning NLU tasks; the proposed approach outperforms massive scale models trained on single task.
Attention-based Encoder-Decoder has the effective architecture for neural machine translation (NMT), which typically relies on recurrent neural networks (RNN) to build the blocks that will be lately called by attentive reader during the decoding proc ess. This design of encoder yields relatively uniform composition on source sentence, despite the gating mechanism employed in encoding RNN. On the other hand, we often hope the decoder to take pieces of source sentence at varying levels suiting its own linguistic structure: for example, we may want to take the entity name in its raw form while taking an idiom as a perfectly composed unit. Motivated by this demand, we propose Multi-channel Encoder (MCE), which enhances encoding components with different levels of composition. More specifically, in addition to the hidden state of encoding RNN, MCE takes 1) the original word embedding for raw encoding with no composition, and 2) a particular design of external memory in Neural Turing Machine (NTM) for more complex composition, while all three encoding strategies are properly blended during decoding. Empirical study on Chinese-English translation shows that our model can improve by 6.52 BLEU points upon a strong open source NMT system: DL4MT1. On the WMT14 English- French task, our single shallow system achieves BLEU=38.8, comparable with the state-of-the-art deep models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا