ﻻ يوجد ملخص باللغة العربية
Traditional neural machine translation is limited to the topmost encoder layers context representation and cannot directly perceive the lower encoder layers. Existing solutions usually rely on the adjustment of network architecture, making the calculation more complicated or introducing additional structural restrictions. In this work, we propose layer-wise multi-view learning to solve this problem, circumventing the necessity to change the model structure. We regard each encoder layers off-the-shelf output, a by-product in layer-by-layer encoding, as the redundant view for the input sentence. In this way, in addition to the topmost encoder layer (referred to as the primary view), we also incorporate an intermediate encoder layer as the auxiliary view. We feed the two views to a partially shared decoder to maintain independent prediction. Consistency regularization based on KL divergence is used to encourage the two views to learn from each other. Extensive experimental results on five translation tasks show that our approach yields stable improvements over multiple strong baselines. As another bonus, our method is agnostic to network architectures and can maintain the same inference speed as the original model.
Existing curriculum learning approaches to Neural Machine Translation (NMT) require sampling sufficient amounts of easy samples from training data at the early training stage. This is not always achievable for low-resource languages where the amount
Many multi-domain neural machine translation (NMT) models achieve knowledge transfer by enforcing one encoder to learn shared embedding across domains. However, this design lacks adaptation to individual domains. To overcome this limitation, we propo
Conventional Neural Machine Translation (NMT) models benefit from the training with an additional agent, e.g., dual learning, and bidirectional decoding with one agent decoding from left to right and the other decoding in the opposite direction. In t
While monolingual data has been shown to be useful in improving bilingual neural machine translation (NMT), effectively and efficiently leveraging monolingual data for Multilingual NMT (MNMT) systems is a less explored area. In this work, we propose
Attention-based Encoder-Decoder has the effective architecture for neural machine translation (NMT), which typically relies on recurrent neural networks (RNN) to build the blocks that will be lately called by attentive reader during the decoding proc