ترغب بنشر مسار تعليمي؟ اضغط هنا

Is entanglement a probe of confinement?

169   0   0.0 ( 0 )
 نشر من قبل Javier Gomez Subils
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study various entanglement measures in a one-parameter family of three-dimensional, strongly coupled Yang-Mills-Chern-Simons field theories by means of their dual supergravity descriptions. A generic field theory in this family possesses a mass gap but does not have a linear quark-antiquark potential. For the two limiting values of the parameter, the theories flow either to a fixed point or to a confining vacuum in the infrared. We show that entanglement measures are unable to discriminate confining theories from non-confining ones with a mass gap. This lends support on the idea that the phase transition of entanglement entropy at large-N can be caused just by the presence of a sizable scale in a theory and just by itself should not be taken as a signal of confinement. We also examine flows passing close to a fixed point at intermediate energy scales and find that the holographic entanglement entropy, the mutual information, and the F-functions for strips and disks quantitatively match the conformal values for a range of energies.


قيم البحث

اقرأ أيضاً

We discuss a general five-dimensional completely anisotropic holographic model with three different spatial scale factors, characterized by a Van der Waals-like phase transition between small and large black holes. A peculiar feature of the model is the relation between anisotropy of the background and anisotropy of the colliding heavy ions geometry. We calculate the holographic entanglement entropy (HEE) of the slab-shaped region, the orientation of which relatively to the beams line and the impact parameter is characterized by the Euler angles. We study the dependences of the HEE and its density on the thermodynamic (temperature, chemical potential) and geometric (parameters of anisotropy, thickness, and orientation of entangled regions) parameters. As a particular case the model with two equal transversal scaling factors is considered. This model is supported by the dilaton and two Maxwell fields. In this case we discuss the HEE and its density in detail: interesting features of this model are jumps of the entanglement entropy and its density near the line of the small/large black hole phase transition. These jumps depend on the anisotropy parameter, chemical potential, and orientation. We also discuss different definitions and behavior of c-functions in this model. The c-function calculated in the Einstein frame decreases while increasing $ell$ for all $ell$ in the isotropic case (in regions of $(mu,T)$-plane far away from the line of the phase transition). We find the non-monotonicity of the c-functions for several anisotropic configurations, which however does not contradict with any of the existing c-theorems since they all base on Lorentz invariance.
We analyze how maximal entanglement is generated at the fundamental level in QED by studying correlations between helicity states in tree-level scattering processes at high energy. We demonstrate that two mechanisms for the generation of maximal enta nglement are at work: i) $s$-channel processes where the virtual photon carries equal overlaps of the helicities of the final state particles, and ii) the indistinguishable superposition between $t$- and $u$-channels. We then study whether requiring maximal entanglement constrains the coupling structure of QED and the weak interactions. In the case of photon-electron interactions unconstrained by gauge symmetry, we show how this requirement allows reproducing QED. For $Z$-mediated weak scattering, the maximal entanglement principle leads to non-trivial predictions for the value of the weak mixing angle $theta_W$. Our results are a first step towards understanding the connections between maximal entanglement and the fundamental symmetries of high-energy physics.
We relate quark confinement, as measured by the Polyakov-loop order parameter, to color confinement, as described by the Kugo-Ojima/Gribov-Zwanziger scenario. We identify a simple criterion for quark confinement based on the IR behaviour of ghost and gluon propagators, and compute the order-parameter potential from the knowledge of Landau-gauge correlation functions with the aid of the functional RG. Our approach predicts the deconfinement transition in quenched QCD to be of first order for SU(3) and second order for SU(2) -- in agreement with general expectations. As an estimate for the critical temperature, we obtain T_c=284MeV for SU(3).
We study some general properties of coupled quantum systems. We consider simple interactions between two copies of identical Hamiltonians such as the SYK model, Pauli spin chains with random magnetic field and harmonic oscillators. Such couplings mak e the ground states close to the thermofield double states of the uncoupled Hamiltonians. For the coupled SYK model, we push the numerical computation further towards the thermodynamic limit so that an extrapolation in the size of the system is possible. We find good agreement between the extrapolated numerical result and the analytic result in the large-$q$ limit. We also consider the coupled gauged matrix model and vector model, and argue that the deconfinement is associated with the loss of the entanglement, similarly to the previous observation for the coupled SYK model. The understanding of the microscopic mechanism of the confinement/deconfinement transition enables us to estimate the quantum entanglement precisely, and backs up the dual gravity interpretation which relates the deconfinement to the disappearance of the wormhole. Our results demonstrate the importance of the entanglement between the color degrees of freedom in the emergence of the bulk geometry from quantum field theory via holography.
108 - F. Lenz , J. W. Negele , M. Thies 2003
It is shown that an effective theory with meron degrees of freedom produces confinement in SU(2) Yang Mills theory. This effective theory is compatible with center symmetry. When the scale is set by the string tension, the action density and topologi cal susceptibility are similar to those arising in lattice QCD.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا