ترغب بنشر مسار تعليمي؟ اضغط هنا

Maximal Entanglement in High Energy Physics

80   0   0.0 ( 0 )
 نشر من قبل Alba Cervera-Lierta
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze how maximal entanglement is generated at the fundamental level in QED by studying correlations between helicity states in tree-level scattering processes at high energy. We demonstrate that two mechanisms for the generation of maximal entanglement are at work: i) $s$-channel processes where the virtual photon carries equal overlaps of the helicities of the final state particles, and ii) the indistinguishable superposition between $t$- and $u$-channels. We then study whether requiring maximal entanglement constrains the coupling structure of QED and the weak interactions. In the case of photon-electron interactions unconstrained by gauge symmetry, we show how this requirement allows reproducing QED. For $Z$-mediated weak scattering, the maximal entanglement principle leads to non-trivial predictions for the value of the weak mixing angle $theta_W$. Our results are a first step towards understanding the connections between maximal entanglement and the fundamental symmetries of high-energy physics.

قيم البحث

اقرأ أيضاً

143 - Steven Gottlieb 2016
Lattice gauge theory was formulated by Kenneth Wilson in 1974. In the ensuing decades, improvements in actions, algorithms, and computers have enabled tremendous progress in QCD, to the point where lattice calculations can yield sub-percent level pre cision for some quantities. Beyond QCD, lattice methods are being used to explore possible beyond the standard model (BSM) theories of dynamical symmetry breaking and supersymmetry. We survey progress in extracting information about the parameters of the standard model by confronting lattice calculations with experimental results and searching for evidence of BSM effects.
Report of the first workshop to identify approaches and techniques in the domain of quantum sensing that can be utilized by future High Energy Physics applications to further the scientific goals of High Energy Physics.
Besides using the laser beam, it is very tempting to directly testify the Bell inequality at high energy experiments where the spin correlation is exactly what the original Bell inequality investigates. In this work, we follow the proposal raised in literature and use the successive decays $J/psitogammaeta_cto LambdabarLambdato ppi^-bar ppi^+$ to testify the Bell inequality. Our goal is twofold, namely, we first make a Monte-Carlo simulation of the processes based on the quantum field theory (QFT). Since the underlying theory is QFT, it implies that we pre-admit the validity of quantum picture. Even though the QFT is true, we need to find how big the database should be, so that we can clearly show deviations of the correlation from the Bell inequality determined by the local hidden variable theory. There have been some critiques on the proposed method, so in the second part, we suggest some improvements which may help to remedy the ambiguities indicated by the critiques. It may be realized at an updated facility of high energy physics, such as BES III.
We present here a theory of fractional electro-magnetism which is capable of describing phenomenon as disparate as the non-locality of the Pippard kernel in superconductivity and anomalous dimensions for conserved currents in holographic dilatonic mo dels. The starting point for our analysis is the observation that the standard current conservation equations remain unchanged if any differential operator that commutes with the total exterior derivative multiplies the current. Such an operator, effectively changing the dimension of the current, increases the allowable gauge transformations in electromagnetism and is at the heart of Nothers second theorem. Here we develop a consistent theory of electromagnetism that exploits this hidden redundancy in which the standard gauge symmetry in electromagnetism is modified by the rotationally invariant operator, the fractional Laplacian. We show that the resultant theories all allow for anomalous (non-traditional) scaling dimensions of the gauge field and the associated current. Using well known extension theorems and the membrane paradigm, we show that either the boundary (UV) or horizon (IR) theory of holographic dilatonic models are both described by such fractional electromagnetism. We also show that the non-local Pippard kernel introduced to solve the problem of the Meissner effect in elemental superconductors can also be formulated as a special case of fractional electromagnetism. We show that the standard charge quantization rules fail when the gauge field acquires an anomalous dimension. The breakdown of charge quantization is discussed extensively in terms of the experimentally measurable modified Aharonov-Bohm effect in the strange metal phase of the cuprate superconductors.
105 - M. Vos , G. Abbas , M. Beneke 2016
A summary is presented of the workshop top physics at linear colliders that was held at IFIC Valencia from the 30th of June to the 3rd July 2015. We present an up-to-date status report of studies into the potential for top quark physics of lepton col liders with an energy reach that exceeds the top quark pair production threshold, with a focus on the linear collider projects ILC and CLIC. This summary shows that such projects can offer very competitive determinations of top quark properties (mass, width) and its interactions with other Standard Model particles, in particular electroweak gauge bosons and the Higgs boson. In both areas the prospects exceed the LHC potential significantly - often by an order of magnitude.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا