ﻻ يوجد ملخص باللغة العربية
Data augmentation has been demonstrated as an effective strategy for improving model generalization and data efficiency. However, due to the discrete nature of natural language, designing label-preserving transformations for text data tends to be more challenging. In this paper, we propose a novel data augmentation framework dubbed CoDA, which synthesizes diverse and informative augmented examples by integrating multiple transformations organically. Moreover, a contrastive regularization objective is introduced to capture the global relationship among all the data samples. A momentum encoder along with a memory bank is further leveraged to better estimate the contrastive loss. To verify the effectiveness of the proposed framework, we apply CoDA to Transformer-based models on a wide range of natural language understanding tasks. On the GLUE benchmark, CoDA gives rise to an average improvement of 2.2% while applied to the RoBERTa-large model. More importantly, it consistently exhibits stronger results relative to several competitive data augmentation and adversarial training base-lines (including the low-resource settings). Extensive experiments show that the proposed contrastive objective can be flexibly combined with various data augmentation approaches to further boost their performance, highlighting the wide applicability of the CoDA framework.
Fine-tuning large pre-trained models with task-specific data has achieved great success in NLP. However, it has been demonstrated that the majority of information within the self-attention networks is redundant and not utilized effectively during the
Adversarial training has been shown effective at endowing the learned representations with stronger generalization ability. However, it typically requires expensive computation to determine the direction of the injected perturbations. In this paper,
Spoken Language Understanding (SLU) converts user utterances into structured semantic representations. Data sparsity is one of the main obstacles of SLU due to the high cost of human annotation, especially when domain changes or a new domain comes. I
In this paper, we study the problem of data augmentation for language understanding in task-oriented dialogue system. In contrast to previous work which augments an utterance without considering its relation with other utterances, we propose a sequen
Detecting offensive language on social media is an important task. The ICWSM-2020 Data Challenge Task 2 is aimed at identifying offensive content using a crowd-sourced dataset containing 100k labelled tweets. The dataset, however, suffers from class