ﻻ يوجد ملخص باللغة العربية
In this work, we are interested in the analysis of time-harmonic Maxwells equations in presence of a conical tip of a material with negative dielectric constants. When these constants belong to some critical range, the electromagnetic field exhibits strongly oscillating singularities at the tip which have infinite energy. Consequently Maxwells equations are not well-posed in the classical $L^2$ framework. The goal of the present work is to provide an appropriate functional setting for 3D Maxwells equations when the dielectric permittivity (but not the magnetic permeability) takes critical values. Following what has been done for the 2D scalar case, the idea is to work in weighted Sobolev spaces, adding to the space the so-called outgoing propagating singularities. The analysis requires new results of scalar and vector potential representations of singular fields. The outgoing behaviour is selected via the limiting absorption principle.
This paper provides a view of Maxwells equations from the perspective of complex variables. The study is made through complex differential forms and the Hodge star operator in $mathbb{C}^2$ with respect to the Euclidean and the Minkowski metrics. It
We study the time harmonic Maxwell equations in a meta-material consisting of perfect conductors and void space. The meta-material is assumed to be periodic with period $eta > 0$; we study the behaviour of solutions $(E^{eta}, H^{eta})$ in the limit
We study the homogenization of elliptic systems of equations in divergence form where the coefficients are compositions of periodic functions with a random diffeomorphism with stationary gradient. This is done in the spirit of scalar stochastic homog
We demonstrate that soliton-plasmon bound states appear naturally as propagating eigenmodes of nonlinear Maxwells equations for a metal/dielectric/Kerr interface. By means of a variational method, we give an explicit and simplified expression for the
Pride (1994, Phys. Rev. B 50 15678-96) derived the governing model of electroseismic conversion, in which Maxwells equations are coupled with Biots equations through an electrokinetic mobility parameter. The inverse problem of electroseismic conversi