ﻻ يوجد ملخص باللغة العربية
Traditional uncertainty relations dictate a minimal amount of noise in incompatible projective quantum measurements. However, not all measurements are projective. Weak measurements are minimally invasive methods for obtaining partial state information without projection. Recently, weak measurements were shown to obey an uncertainty relation cast in terms of entropies. We experimentally test this entropic uncertainty relation with strong and weak measurements of a superconducting transmon qubit. A weak measurement, we find, can reconcile two strong measurements incompatibility, via backaction on the state. Mathematically, a weak value -- a preselected and postselected expectation value -- lowers the uncertainty bound. Hence we provide experimental support for the physical interpretation of the weak value as a determinant of a weak measurements ability to reconcile incompatible operations.
Being one of the centroidal concepts in quantum theory, the fundamental constraint imposed by Heisenberg uncertainty relations has always been a subject of immense attention and challenging in the context of joint measurements of general quantum mech
The problem of combating de-coherence by weak measurements has already been studied for the amplitude damping channel and for specific input states. We generalize this to a large four-parameter family of qubit channels and for the average fidelity ov
The standard method of measuring quantum wavefunction is the technique of {it indirect} quantum state tomography. Owing to conceptual novelty and possible advantages, an alternative {it direct} scheme was proposed and demonstrated recently in quantum
Highly state-selective, weakly dissipative population transfer is used to irreversibly move the population of one ground state qubit level of an atomic ion to an effectively stable excited manifold with high fidelity. Subsequent laser interrogation a
We analyze the operation of a switching-based detector that probes a qubits observable that does not commute with the qubits Hamiltonian, leading to a nontrivial interplay between the measurement and free-qubit dynamics. In order to obtain analytic r