ﻻ يوجد ملخص باللغة العربية
Small bodies, the unaccreted leftovers of planetary formation, are often mistaken for the leftovers of planetary science in the sense that they are everything else after the planets and their satellites (or sometimes just their regular satellites) are accounted for. This mistaken view elides the great diversity of compositions, histories, and present-day conditions and processes found in the small bodies, and the interdisciplinary nature of their study. Understanding small bodies is critical to planetary science as a field, and we urge planetary scientists and our decision makers to continue to support science-based mission selections and to recognize that while small bodies have been grouped together for convenience, the diversity of these objects in terms of composition, mass, differentiation, evolution, activity, dynamical state, physical structure, thermal environment, thermal history, and formation vastly exceeds the observed variability in the major planets and their satellites. Treating them as a monolithic group with interchangeable members does a grave injustice to the range of fundamental questions they address. We advocate for a deep and ongoing program of missions, telescopic observations, R and A funding, and student support that respects this diversity.
Habitability has been generally defined as the capability of an environment to support life. Ecologists have been using Habitat Suitability Models (HSMs) for more than four decades to study the habitability of Earth from local to global scales. Astro
Galactic cosmic rays undergo complex nuclear interactions with nuclei within planetary bodies that have little to no atmosphere. Radiation transport simulations are a key tool used in understanding the neutron and gamma-ray albedo coming from these i
We present THERMAP, a mid-infrared (8-16 {mu}m) spectro-imager for space missions to small bodies in the inner solar system, developed in the framework of the MarcoPolo-R asteroid sample return mission. THERMAP is very well suited to characterize the
The WGLA of the AAS (http://www.aas.org/labastro/) promotes collaboration and exchange of knowledge between astronomy and planetary sciences and the laboratory sciences (physics, chemistry, and biology). Laboratory data needs of ongoing and next gene
Dynamical models of Solar System evolution have suggested that P-/D-type volatile-rich asteroids formed in the outer Solar System and may be genetically related to the Jupiter Trojans, the comets and small KBOs. Indeed, their spectral properties rese