ترغب بنشر مسار تعليمي؟ اضغط هنا

THERMAP: a mid-infrared spectro-imager for space missions to small bodies in the inner solar system

187   0   0.0 ( 0 )
 نشر من قبل Olivier Groussin
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present THERMAP, a mid-infrared (8-16 {mu}m) spectro-imager for space missions to small bodies in the inner solar system, developed in the framework of the MarcoPolo-R asteroid sample return mission. THERMAP is very well suited to characterize the surface thermal environment of a NEO and to map its surface composition. The instrument has two channels, one for imaging and one for spectroscopy: it is both a thermal camera with full 2D imaging capabilities and a slit spectrometer. THERMAP takes advantage of the recent technological developments of uncooled microbolometers detectors, sensitive in the mid-infrared spectral range. THERMAP can acquire thermal images (8-18 {mu}m) of the surface and perform absolute temperature measurements with a precision better than 3.5 K above 200 K. THERMAP can acquire mid-infrared spectra (8-16 {mu}m) of the surface with a spectral resolution {Delta}{lambda} of 0.3 {mu}m. For surface temperatures above 350 K, spectra have a signal-to-noise ratio >60 in the spectral range 9-13 {mu}m where most emission features occur.

قيم البحث

اقرأ أيضاً

METIS will be among the first generation of scientific instruments on the E-ELT. Focusing on highest angular resolution and high spectral resolution, METIS will provide diffraction limited imaging and coronagraphy from 3-14um over an 20x20 field of v iew, as well as integral field spectroscopy at R ~ 100,000 from 2.9-5.3um. In addition, METIS provides medium-resolution (R ~ 5000) long slit spectroscopy, and polarimetric measurements at N band. While the baseline concept has already been discussed, this paper focuses on the significant developments over the past two years in several areas: The science case has been updated to account for recent progress in the main science areas circum-stellar disks and the formation of planets, exoplanet detection and characterization, Solar system formation, massive stars and clusters, and star formation in external galaxies. We discuss the developments in the adaptive optics (AO) concept for METIS, the telescope interface, and the instrument modelling. Last but not least, we provide an overview of our technology development programs, which ranges from coronagraphic masks, immersed gratings, and cryogenic beam chopper to novel approaches to mirror polishing, background calibration and cryo-cooling. These developments have further enhanced the design and technology readiness of METIS to reliably serve as an early discovery machine on the E-ELT.
Small bodies are time-capsules of different eras of solar system history from the most primitive materials within the solar system to evolved pieces of larger bodies. A small body sample return program is an essential component of small body explorat ion, and such a program should include opportunities for both missions and laboratory analysis.
134 - Michael Zemcov 2019
Astrophysical measurements away from the 1 AU orbit of Earth can enable several astrophysical science cases that are challenging or impossible to perform from Earthbound platforms, including: building a detailed understanding of the extragalactic bac kground light throughout the electromagnetic spectrum; measurements of the properties of dust and ice in the inner and outer solar system; determinations of the mass of planets and stellar remnants far from luminous stars using gravitational microlensing; and stable time-domain astronomy. Though potentially transformative for astrophysics, opportunities to fly instrumentation capable of these measurements are rare, and a mission to the distant solar system that includes instrumentation expressly designed to perform astrophysical science, or even one primarily for a different purpose but capable of precise astronomical investigation, has not yet been flown. In this White Paper, we describe the science motivations for this kind of measurement, and advocate for future flight opportunities that permit intersectional collaboration and cooperation to make these science investigations a reality.
Since 2009, the Kepler, K2, and TESS missions have produced a vast number of lightcurves for public use. To assist citizen scientists in processing those lightcurves, the LcTools software system was developed. The system provides a set of tools to ef ficiently search for signals of interest in large sets of lightcurves using automated and manual (visual) techniques. At the heart of the system is a multipurpose lightcurve viewer and signal processor with advanced navigation and display capabilities to facilitate the search for signals. Other applications in the system are available for building lightcurve files in bulk, finding periodic signals automatically, and generating signal reports. This paper describes each application in the system and the methods by which the software can be used to detect and record signals. The software is free and can be obtained from the lead author by request.
91 - Sascha P. Quanz 2018
One of the long-term goals of exoplanet science is the (atmospheric) characterization of a large sample (>100) of terrestrial planets to assess their potential habitability and overall diversity. Hence, it is crucial to quantitatively evaluate and co mpare the scientific return of various mission concepts. Here we discuss the exoplanet yield of a space-based mid-infrared (MIR) nulling interferometer. We use Monte-Carlo simulations, based on the observed planet population statistics from the Kepler mission, to quantify the number and properties of detectable exoplanets (incl. potentially habitable planets) and we compare the results to those for a large aperture optical/NIR space telescope. We investigate how changes in the underlying technical assumptions (sensitivity and spatial resolution) impact the results and discuss scientific aspects that influence the choice for the wavelength coverage and spectral resolution. Finally, we discuss the advantages of detecting exoplanets at MIR wavelengths, summarize the current status of some key technologies, and describe what is needed in terms of further technology development to pave the road for a space-based MIR nulling interferometer for exoplanet science.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا