ﻻ يوجد ملخص باللغة العربية
Previous RGB-D salient object detection (SOD) methods have widely adopted deep learning tools to automatically strike a trade-off between RGB and D (depth), whose key rationale is to take full advantage of their complementary nature, aiming for a much-improved SOD performance than that of using either of them solely. However, such fully automatic fusions may not always be helpful for the SOD task because the D quality itself usually varies from scene to scene. It may easily lead to a suboptimal fusion result if the D quality is not considered beforehand. Moreover, as an objective factor, the D quality has long been overlooked by previous work. As a result, it is becoming a clear performance bottleneck. Thus, we propose a simple yet effective scheme to measure D quality in advance, the key idea of which is to devise a series of features in accordance with the common attributes of high-quality D regions. To be more concrete, we conduct D quality assessments for each image region, following a multi-scale methodology that includes low-level edge consistency, mid-level regional uncertainty and high-level model variance. All these components will be computed independently and then be assembled with RGB and D features, applied as implicit indicators, to guide the selective fusion. Compared with the state-of-the-art fusion schemes, our method can achieve a more reasonable fusion status between RGB and D. Specifically, the proposed D quality measurement method achieves steady performance improvements for almost 2.0% in general.
RGB-D salient object detection (SOD) recently has attracted increasing research interest by benefiting conventional RGB SOD with extra depth information. However, existing RGB-D SOD models often fail to perform well in terms of both efficiency and ac
Aiming at discovering and locating most distinctive objects from visual scenes, salient object detection (SOD) plays an essential role in various computer vision systems. Coming to the era of high resolution, SOD methods are facing new challenges. Th
Consumer-level depth cameras and depth sensors embedded in mobile devices enable numerous applications, such as AR games and face identification. However, the quality of the captured depth is sometimes insufficient for 3D reconstruction, tracking and
Multi-level feature fusion is a fundamental topic in computer vision. It has been exploited to detect, segment and classify objects at various scales. When multi-level features meet multi-modal cues, the optimal feature aggregation and multi-modal le
The high computational cost of neural networks has prevented recent successes in RGB-D salient object detection (SOD) from benefiting real-world applications. Hence, this paper introduces a novel network, methodname, which focuses on efficient RGB-D