ترغب بنشر مسار تعليمي؟ اضغط هنا

The Saturn Ring Skimmer Mission Concept: The next step to explore Saturns rings, atmosphere, interior, and inner magnetosphere

69   0   0.0 ( 0 )
 نشر من قبل Matthew S. Tiscareno
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The innovative Saturn Ring Skimmer mission concept enables a wide range of investigations that address fundamental questions about Saturn and its rings, as well as giant planets and astrophysical disk systems in general. This mission would provide new insights into the dynamical processes that operate in astrophysical disk systems by observing individual particles in Saturns rings for the first time. The Ring Skimmer would also constrain the origin, history, and fate of Saturns rings by determining their compositional evolution and material transport rates. In addition, the Ring Skimmer would reveal how the rings, magnetosphere, and planet operate as an inter-connected system by making direct measurements of the rings atmosphere, Saturns inner magnetosphere and the material owing from the rings into the planet. At the same time, this mission would clarify the dynamical processes operating in the planets visible atmosphere and deep interior by making extensive high-resolution observations of cloud features and repeated measurements of the planets extremely dynamic gravitational field. Given the scientific potential of this basic mission concept, we advocate that it be studied in depth as a potential option for the New Frontiers program.

قيم البحث

اقرأ أيضاً

The Hera Saturn entry probe mission is proposed as an M--class mission led by ESA with a contribution from NASA. It consists of one atmospheric probe to be sent into the atmosphere of Saturn, and a Carrier-Relay spacecraft. In this concept, the Hera probe is composed of ESA and NASA elements, and the Carrier-Relay Spacecraft is delivered by ESA. The probe is powered by batteries, and the Carrier-Relay Spacecraft is powered by solar panels and batteries. We anticipate two major subsystems to be supplied by the United States, either by direct procurement by ESA or by contribution from NASA: the solar electric power system (including solar arrays and the power management and distribution system), and the probe entry system (including the thermal protection shield and aeroshell). Hera is designed to perform in situ measurements of the chemical and isotopic compositions as well as the dynamics of Saturns atmosphere using a single probe, with the goal of improving our understanding of the origin, formation, and evolution of Saturn, the giant planets and their satellite systems, with extrapolation to extrasolar planets. Heras aim is to probe well into the cloud-forming region of the troposphere, below the region accessible to remote sensing, to the locations where certain cosmogenically abundant species are expected to be well mixed. By leading to an improved understanding of the processes by which giant planets formed, including the composition and properties of the local solar nebula at the time and location of giant planet formation, Hera will extend the legacy of the Galileo and Cassini missions by further addressing the creation, formation, and chemical, dynamical, and thermal evolution of the giant planets, the entire solar system including Earth and the other terrestrial planets, and formation of other planetary systems.
The Lucy Mission accomplishes its science during a series of five flyby encounters with seven Trojan asteroid targets. This mission architecture drives a concept of operations design that maximizes science return, provides redundancy in observations where possible, features autonomous fault protection and utilizes onboard target tracking near closest approach. These design considerations reduce risk during the relatively short time-critical periods when science data is collected. The payload suite consists of a color camera and infrared imaging spectrometer, a high-resolution panchromatic imager, and a thermal infrared spectrometer. The mission design allows for concurrent observations of all instruments. Additionally, two spacecraft subsystems will also contribute to the science investigations: the Terminal Tracking Cameras will obtain wide field-of-view imaging near closest approach to determine the shape of each of the Trojan targets and the telecommunication subsystem will carry out Doppler tracking of the spacecraft to determine the mass of each of the Trojan targets.
Saturns magnetospheric magnetic field, planetary radio emissions, plasma populations and magnetospheric structure are all known to be modulated at periods close to the assumed rotation period of the planetary interior. These oscillations are readily apparent despite the high degree of axi-symmetry in the internally produced magnetic field of the planet, and have different rotation periods in the northern and southern hemispheres. In this paper we study the spatial structure of (near-) planetary period magnetic field oscillations in Saturns equatorial magnetosphere. Extending previous analyses of these phenomena, we include all suitable data from the entire Cassini mission during its orbital tour of the planet, so as to be able to quantify both the amplitude and phase of these field oscillations throughout Saturns equatorial plane, to distances of 30 planetary radii. We study the structure of these field oscillations in view of both independently rotating northern and southern systems, finding spatial variations in both magnetic fields and inferred currents flowing north-south that are common to both systems. With the greatly expanded coverage of the equatorial plane achieved during the latter years of the mission, we are able to present a complete survey of dawn-dusk and day-night asymmetries in the structure of the oscillating fields and currents. We show that the general structure of the rotating currents is simpler than previously reported, and that the relatively enhanced nightside equatorial fields and currents are due in part to related periodic vertical motion of Saturns magnetotail current sheet.
Nowadays, astronomers want to observe gaps in exozodiacal disks to confirm the presence of exoplanets, or even make actual images of these companions. Four hundred and fifty years ago, Jean-Dominique Cassini did a similar study on a closer object: Sa turn. After joining the newly created Observatoire de Paris in 1671, he discovered 4 of Saturns satellites (Iapetus, Rhea, Tethys and Dione), and also the gap in its rings. He made these discoveries observing through the best optics at the time, made in Italy by famous opticians like Giuseppe Campani or Eustachio Divini. But was he really able to observe this black line in Saturns rings? That is what a team of optical scientists from Observatoire de Paris - LESIA with the help of Onera and Institut dOptique tried to find out, analyzing the lenses used by Cassini, and still preserved in the collection of the observatory. The main difficulty was that even if the lenses have diameters between 84 and 239 mm, the focal lengths are between 6 and 50 m, more than the focal lengths of the primary mirrors of future ELTs. The analysis shows that the lenses have an exceptionally good quality, with a wavefront error of approximately 50 nm rms and 200 nm peak-to-valley, leading to Strehl ratios higher than 0.8. Taking into account the chromaticity of the glass, the wavefront quality and atmospheric turbulence, reconstructions of his observations tend to show that he was actually able to see the division named after him.
The Origins Space Telescope (Origins) traces our cosmic history, from the formation of the first galaxies and the rise of metals to the development of habitable worlds and present-day life. Origins does this through exquisite sensitivity to infrared radiation from ions, atoms, molecules, dust, water vapor and ice, and observations of extra-solar planetary atmospheres, protoplanetary disks, and large-area extragalactic fields. Origins operates in the wavelength range 2.8 to 588 microns and is 1000 times more sensitive than its predecessors due to its large, cold (4.5 K) telescope and advanced instruments. Origins was one of four large missions studied by the community with support from NASA and industry in preparation for the 2020 Decadal Survey in Astrophysics. This is the final study report.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا