ﻻ يوجد ملخص باللغة العربية
Wasserstein geometry and information geometry are two important structures to be introduced in a manifold of probability distributions. Wasserstein geometry is defined by using the transportation cost between two distributions, so it reflects the metric of the base manifold on which the distributions are defined. Information geometry is defined to be invariant under reversible transformations of the base space. Both have their own merits for applications. In particular, statistical inference is based upon information geometry, where the Fisher metric plays a fundamental role, whereas Wasserstein geometry is useful in computer vision and AI applications. In this study, we analyze statistical inference based on the Wasserstein geometry in the case that the base space is one-dimensional. By using the location-scale model, we further derive the W-estimator that explicitly minimizes the transportation cost from the empirical distribution to a statistical model and study its asymptotic behaviors. We show that the W-estimator is consistent and explicitly give its asymptotic distribution by using the functional delta method. The W-estimator is Fisher efficient in the Gaussian case.
This paper deals with the estimation of a probability measure on the real line from data observed with an additive noise. We are interested in rates of convergence for the Wasserstein metric of order $pgeq 1$. The distribution of the errors is assume
Let ${P_{theta}:theta in {mathbb R}^d}$ be a log-concave location family with $P_{theta}(dx)=e^{-V(x-theta)}dx,$ where $V:{mathbb R}^dmapsto {mathbb R}$ is a known convex function and let $X_1,dots, X_n$ be i.i.d. r.v. sampled from distribution $P_{t
In this paper, we use the class of Wasserstein metrics to study asymptotic properties of posterior distributions. Our first goal is to provide sufficient conditions for posterior consistency. In addition to the well-known Schwartzs Kullback--Leibler
Sensitivity indices are commonly used to quantity the relative inuence of any specic group of input variables on the output of a computer code. In this paper, we focus both on computer codes the output of which is a cumulative distribution function a
We investigate predictive density estimation under the $L^2$ Wasserstein loss for location families and location-scale families. We show that plug-in densities form a complete class and that the Bayesian predictive density is given by the plug-in den