ترغب بنشر مسار تعليمي؟ اضغط هنا

Predictive density estimation under the Wasserstein loss

63   0   0.0 ( 0 )
 نشر من قبل Takeru Matsuda
 تاريخ النشر 2019
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate predictive density estimation under the $L^2$ Wasserstein loss for location families and location-scale families. We show that plug-in densities form a complete class and that the Bayesian predictive density is given by the plug-in density with the posterior mean of the location and scale parameters. We provide Bayesian predictive densities that dominate the best equivariant one in normal models.



قيم البحث

اقرأ أيضاً

Let $X|musim N_p(mu,v_xI)$ and $Y|musim N_p(mu,v_yI)$ be independent $p$-dimensional multivariate normal vectors with common unknown mean $mu$. Based on observing $X=x$, we consider the problem of estimating the true predictive density $p(y|mu)$ of $ Y$ under expected Kullback--Leibler loss. Our focus here is the characterization of admissible procedures for this problem. We show that the class of all generalized Bayes rules is a complete class, and that the easily interpretable conditions of Brown and Hwang [Statistical Decision Theory and Related Topics (1982) III 205--230] are sufficient for a formal Bayes rule to be admissible.
174 - Xinyi Xu , Feng Liang 2010
We consider the problem of estimating the predictive density of future observations from a non-parametric regression model. The density estimators are evaluated under Kullback--Leibler divergence and our focus is on establishing the exact asymptotics of minimax risk in the case of Gaussian errors. We derive the convergence rate and constant for minimax risk among Bayesian predictive densities under Gaussian priors and we show that this minimax risk is asymptotically equivalent to that among all density estimators.
140 - Alain Celisse 2014
We analyze the performance of cross-validation (CV) in the density estimation framework with two purposes: (i) risk estimation and (ii) model selection. The main focus is given to the so-called leave-$p$-out CV procedure (Lpo), where $p$ denotes the cardinality of the test set. Closed-form expressions are settled for the Lpo estimator of the risk of projection estimators. These expressions provide a great improvement upon $V$-fold cross-validation in terms of variability and computational complexity. From a theoretical point of view, closed-form expressions also enable to study the Lpo performance in terms of risk estimation. The optimality of leave-one-out (Loo), that is Lpo with $p=1$, is proved among CV procedures used for risk estimation. Two model selection frameworks are also considered: estimation, as opposed to identification. For estimation with finite sample size $n$, optimality is achieved for $p$ large enough [with $p/n=o(1)$] to balance the overfitting resulting from the structure of the model collection. For identification, model selection consistency is settled for Lpo as long as $p/n$ is conveniently related to the rate of convergence of the best estimator in the collection: (i) $p/nto1$ as $nto+infty$ with a parametric rate, and (ii) $p/n=o(1)$ with some nonparametric estimators. These theoretical results are validated by simulation experiments.
This paper studies the minimax rate of nonparametric conditional density estimation under a weighted absolute value loss function in a multivariate setting. We first demonstrate that conditional density estimation is impossible if one only requires t hat $p_{X|Z}$ is smooth in $x$ for all values of $z$. This motivates us to consider a sub-class of absolutely continuous distributions, restricting the conditional density $p_{X|Z}(x|z)$ to not only be Holder smooth in $x$, but also be total variation smooth in $z$. We propose a corresponding kernel-based estimator and prove that it achieves the minimax rate. We give some simple examples of densities satisfying our assumptions which imply that our results are not vacuous. Finally, we propose an estimator which achieves the minimax optimal rate adaptively, i.e., without the need to know the smoothness parameter values in advance. Crucially, both of our estimators (the adaptive and non-adaptive ones) impose no assumptions on the marginal density $p_Z$, and are not obtained as a ratio between two kernel smoothing estimators which may sound like a go to approach in this problem.
83 - Zheng Liu , Po-Ling Loh 2021
Robust estimation is an important problem in statistics which aims at providing a reasonable estimator when the data-generating distribution lies within an appropriately defined ball around an uncontaminated distribution. Although minimax rates of es timation have been established in recent years, many existing robust estimators with provably optimal convergence rates are also computationally intractable. In this paper, we study several estimation problems under a Wasserstein contamination model and present computationally tractable estimators motivated by generative adversarial networks (GANs). Specifically, we analyze properties of Wasserstein GAN-based estimators for location estimation, covariance matrix estimation, and linear regression and show that our proposed estimators are minimax optimal in many scenarios. Finally, we present numerical results which demonstrate the effectiveness of our estimators.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا