ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-linear transport without spin-orbit coupling or warping in two-dimensional Dirac semimetals

75   0   0.0 ( 0 )
 نشر من قبل Kush Saha
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It has recently been realized that the first-order moment of the Berry curvature, namely the Berry curvature dipole (BCD) can give rise to non-linear current in a wide variety of time-reversal invariant and non-centrosymmetric materials. While the BCD in two-dimensional Dirac systems is known to be finite only in the presence of either substantial spin-orbit coupling where low-energy Dirac quasiparticles form tilted cones or higher order warping of the Fermi surface, we argue that the low-energy Dirac quasiparticles arising from the merging of a pair of Dirac points without any tilt or warping of the Fermi surface can lead to a non-zero BCD. Remarkably, in such systems, the BCD is found to be independent of Dirac velocity as opposed to the Dirac dispersion with a tilt or warping effects. We further show that the proposed systems can naturally host helicity-dependent photocurrent due to their linear momentum-dependent Berry curvatures. Finally, we discuss an important byproduct of this work, i.e., nonlinear anomalous Nernst effect as a second-order thermal response.

قيم البحث

اقرأ أيضاً

Realizing stable two-dimensional (2D) Dirac points against spin-orbit coupling (SOC) has attracted much attention because it provides a platform to study the unique transport properties. In previous work, Young and Kane [Phys. Rev. Lett. textbf{115}, 126803 (2015)] proposed stable 2D Dirac points with SOC, in which the Berry curvature and edge states vanish due to the coexistence of inversion and time-reversal symmetries. Herein, using the tight-binding model and k$cdot$p effective Hamiltonian, we present that 2D Dirac points can survive in the presence of SOC without inversion symmetry. Such 2D Dirac semimetals possess nonzero Berry curvature near the crossing nodes, and two edge states are terminated at one pair of Dirac points. In addition, according to symmetry arguments and high-throughput first-principles calculations, we identify a family of ideal 2D Dirac semimetals, which has nonzero Berry curvature in the vicinity of Dirac points and visible edge states, thus facilitating the experimental observations. Our work shows that 2D Dirac points can emerge without inversion symmetry, which not only enriches the classification of 2D topological semimetals but also provides a promising avenue to observe exotic transport phenomena beyond graphene, e.g., nonlinear Hall effect.
We demonstrate that spin-orbit coupling (SOC) strength for electrons near the conduction band edge in few-layer $gamma$-InSe films can be tuned over a wide range. This tunability is the result of a competition between film-thickness-dependent intrins ic and electric-field-induced SOC, potentially, allowing for electrically switchable spintronic devices. Using a hybrid $mathbf{kcdot p}$ tight-binding model, fully parameterized with the help of density functional theory computations, we quantify SOC strength for various geometries of InSe-based field-effect transistors. The theoretically computed SOC strengths are compared with the results of weak antilocalization measurements on dual-gated multilayer InSe films, interpreted in terms of Dyakonov-Perel spin relaxation due to SOC, showing a good agreement between theory and experiment.
Two-dimensional Dirac semimetals have attracted much attention because of their linear energy dispersion and non-trivial Berry phase. Graphene-like 2D Dirac materials are gapless only within certain approximations, e.g., if spin-orbit coupling (SOC) is neglected. It has recently been reported that materials with nonsymmorphic crystal lattice possess symmetry-enforced Dirac-like band dispersion around certain high-symmetry momenta even in the presence of SOC. Here we calculate the optical absorption coefficient of nonsymmorphic semimetals, such as $alpha$-bismuthene, which hosts two anisotropic Dirac cones with different Fermi velocities along $x$ and $y$ directions.We find that the optical absorption coefficient depends strongly on the anisotropy factor and the photon polarization. When a magnetic field is applied perpendicular to the plane of the material, the absorption coefficient also depends on an internal parameter we termed the mixing angle of the band structure. We further find that an in-plane magnetic field, while leaving the system gapless, can induce a Van-Hove singularity in the joint density of states: this causes a significant enhancement of the optical absorption at the frequency of the singularity for one direction of polarization but not for the orthogonal one, making the optical properties even more strongly dependent on polarization. Due to the anisotropy present in our model, the Dirac cones at two high-symmetry momenta in the Brillouin zone contribute very differently to the optical absorbance. Consequently, it might be possible to preferentially populate one valley or the other by varying photon polarization and frequency. These results suggest that nonsymmorphic 2D Dirac semimetals are excellent candidate materials for tunable magneto-optic devices.
We theoretically study three-dimensional topological semimetals (TSMs) with nodal lines protected by crystalline symmetries. Compared with TSMs with point nodes, e.g., Weyl semimetals and Dirac semimetals, where the conduction and the valence bands t ouch at discrete points, in these new TSMs the two bands cross at closed lines in the Brillouin zone. We propose two new classes of symmetry protected nodal lines in the absence and in the presence of spin-orbital coupling (SOC), respectively. In the former, we discuss nodal lines that are protected by the combination of inversion symmetry and time-reversal symmetry; yet unlike any previously studied nodal lines in the same symmetry class, each nodal line has a $Z_2$ monopole charge and can only be created (annihilated) in pairs. In the second class, with SOC, we show that a nonsymmorphic symmetry (screw axis) protects a four-band crossing nodal line in systems having both inversion and time-reversal symmetries.
We study exciton-polaritons in a two-dimensional Lieb lattice of micropillars. The energy spectrum of the system features two flat bands formed from $S$ and $P_{x,y}$ photonic orbitals, into which we trigger bosonic condensation under high power exci tation. The symmetry of the orbital wave functions combined with photonic spin-orbit coupling gives rise to emission patterns with pseudospin texture in the flat band condensates. Our work shows the potential of polariton lattices for emulating flat band Hamiltonians with spin-orbit coupling, orbital degrees of freedom and interactions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا