ﻻ يوجد ملخص باللغة العربية
We theoretically study three-dimensional topological semimetals (TSMs) with nodal lines protected by crystalline symmetries. Compared with TSMs with point nodes, e.g., Weyl semimetals and Dirac semimetals, where the conduction and the valence bands touch at discrete points, in these new TSMs the two bands cross at closed lines in the Brillouin zone. We propose two new classes of symmetry protected nodal lines in the absence and in the presence of spin-orbital coupling (SOC), respectively. In the former, we discuss nodal lines that are protected by the combination of inversion symmetry and time-reversal symmetry; yet unlike any previously studied nodal lines in the same symmetry class, each nodal line has a $Z_2$ monopole charge and can only be created (annihilated) in pairs. In the second class, with SOC, we show that a nonsymmorphic symmetry (screw axis) protects a four-band crossing nodal line in systems having both inversion and time-reversal symmetries.
We review the recent, mainly theoretical, progress in the study of topological nodal line semimetals in three dimensions. In these semimetals, the conduction and the valence bands cross each other along a one-dimensional curve in the three-dimensiona
Lattice deformations act on the low-energy excitations of Dirac materials as effective axial vector fields. This allows to directly detect quantum anomalies of Dirac materials via the response to axial gauge fields. We investigate the parity anomaly
Superconducting Weyl semimetals present a novel and promising system to harbor new forms of unconventional topological superconductivity. Within the context of time-reversal symmetric Weyl semimetals with $d$-wave superconductivity, we demonstrate th
Owing to the natural compatibility with current semiconductor industry, silicon allotropes with diverse structural and electronic properties provide promising platforms for the next-generation Si-based devices. After screening 230 all-silicon crystal
The existence and topological classification of lower-dimensional Fermi surfaces is often tied to the crystal symmetries of the underlying lattice systems. Artificially engineered lattices, such as heterostructures and other superlattices, provide pr