ﻻ يوجد ملخص باللغة العربية
In mathematical models of lithium-ion batteries, the highly heterogeneous porous electrodes are frequently approximated as comprising spherical particles of uniform size, leading to the commonly-used single-particle model (SPM) when transport in the electrolyte is assumed to be fast. Here electrode heterogeneity is modelled by extending this to a distribution of particle sizes. Unimodal and bimodal particle-size distributions (PSD) are considered. For a unimodal PSD, the effect of the spread of the distribution on the cell dynamics is investigated, and choice of effective particle radius when approximating by an SPM assessed. Asymptotic techniques are used to derive a correction to the SPM valid for narrow, but realistic, PSDs. In addition, it is shown that the heterogeneous internal states of all particles (relevant when modelling degradation, for example) can be efficiently computed after-the-fact. For a bimodal PSD, the results are well approximated by a double-particle model (DPM), with one size representing each mode. Results for lithium iron phosphate with a bimodal PSD show that the DPM captures an experimentally-observed double-plateau in the discharge curve, suggesting it is entirely due to bimodality.
We present a porous electrode model for lithium-ion batteries using Butler--Volmer reaction kinetics. We model lithium concentration in both the solid and fluid phase along with solid and liquid electric potential. Through asymptotic reduction, we sh
A thick electrode with high areal capacity has been developed as a strategy for high-energy-density lithium-ion batteries, but thick electrodes have difficulties in manufacturing and limitations in ion transport. Here, we reported a new manufacturing
In the lithium-ion battery literature, discharges followed by a relaxation to equilibrium are frequently used to validate models and their parametrizations. Good agreement with experiment during discharge is easily attained with a pseudo-two-dimensio
Present theories of irreversible energy losses and heat generation within Li-ion cells are unsatisfactory because they are not compatible with energy conservation. This work aims to provide a consistent theoretical treatment of energy transport and l
A porous electrode resulting from unregulated Li growth is the major cause of the low Coulombic efficiency and potential safety hazards of rechargeable Li metal batteries. Strategies aiming to achieve large granular Li deposits have been extensively