ترغب بنشر مسار تعليمي؟ اضغط هنا

Radiation induced interaction potential of two qubits strongly coupled with a quantized electromagnetic field

187   0   0.0 ( 0 )
 نشر من قبل Oleg Skoromnik
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the interaction of two two-level qubits with a single mode quantum field in a cavity without rotating wave approximation and considering that qubits can be located at an arbitrary distance from each other. We demonstrate that there exists a radiation induced interaction potential between atoms. We studied the properties of the system numerically and in addition constructed a simple analytical approximation. It is shown that the observable characteristics are substantially dependent on the distance between the qubits in the strong coupling regime. This allows one to perform the quantum control of the qubits, which can be exploited for the recording and transmission of quantum information.



قيم البحث

اقرأ أيضاً

We study the non-equilibrium dynamics of a pair of qubits made of two-level atoms separated in space with distance $r$ and interacting with one common electromagnetic field but not directly with each other. Our calculation makes a weak coupling assum ption but no Born or Markov approximation. We write the evolution equations of the reduced density matrix of the two-qubit system after integrating out the electromagnetic field modes. We study two classes of states in detail: Class A is a one parameter family of states which are the superposition of the highest energy and lowest energy states, and Class B states which are the linear combinations of the symmetric and the antisymmetric Bell states. Our results for an initial Bell state are similar to those obtained before for the same model derived under the Born-Markov approximation. However, in the Class A states the behavior is qualitatively different: under the non-Markovian evolution we do not see sudden death of quantum entanglement and subsequent revivals, except when the qubits are sufficiently far apart. We provide explanations for such differences of behavior both between these two classes of states and between the predictions from the Markov and non-Markovian dynamics. We also study the decoherence of this two-qubit system.
We investigate the difference between classical and quantum dynamics of coupled magnetic dipoles. We prove that in general the dynamics of the classical interaction Hamiltonian differs from the corresponding quantum model, regardless of the initial s tate. The difference appears as non positive-definite diffusion terms in the quantum evolution equation of an appropriate positive phase-space probability density. Thus, it is not possible to express the dynamics in terms of a convolution of a positive transition probability function and the initial condition as can be done in the classical case. We conclude that the dynamics is a quantum element of NMR quantum information processing. There are two limits where our quantum evolution coincide with the classical one: the short time limit before spin-spin interaction sets in and the long time limit when phase diffusion is incorporated.
Here, we propose a scheme to generate a controllable Ising interaction between superconducting flux qubits. Existing schemes rely on inducting couplings to realize Ising interactions between flux qubits, and the interaction strength is controlled by an applied magnetic field On the other hand, we have found a way to generate an interaction between the flux qubits via capacitive couplings. This has an advantage in individual addressability, because we can control the interaction strength by changing an applied voltage that can be easily localized. This is a crucial step toward the realizing superconducting flux qubit quantum computation.
We investigate heat rectification in a two-qubit system coupled via the Dzyaloshinskii-Moriya (DM) interaction. We derive analytical expressions for heat currents and thermal rectification and provide possible physical mechanisms behind the observed results. We show that the anisotropy of DM interaction in itself is insufficient for heat rectification, and some other form of asymmetry is needed. We employ off-resonant qubits as the source of this asymmetry. We find the regime of parameters for higher rectification factors by examining the analytical expressions of rectification obtained from a global master equation solution. In addition, it is shown that the direction and quality of rectification can be controlled via various system parameters. Furthermore, we compare the influence of different orientations of the DM field anisotropy on the performance of heat rectification.
We show how to derive a consistent quantum theory of radiation reaction of a non-relativistic point-dipole quantum oscillator by including the dynamical fluctuations of the position of the dipole. The proposed non-linear theory displays neither runaw ay solutions nor acausal behaviour without requiring additional assumptions. Furthermore, we show that quantum (zero-point) fluctuations of the electromagnetic field are necessary to fulfil the second law of thermodynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا