ترغب بنشر مسار تعليمي؟ اضغط هنا

Participatory Design to build better contact- and proximity-tracing apps

340   0   0.0 ( 0 )
 نشر من قبل Abhishek Gupta
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

With the push for contact- and proximity-tracing solutions as a means to manage the spread of the pandemic, there is a distrust between the citizens and authorities that are deploying these solutions. The efficacy of the solutions relies on meeting a minimum uptake threshold which is hitting a barrier because of a lack of trust and transparency in how these solutions are being developed. We propose participatory design as a mechanism to evoke trust and explore how it might be applied to co-create technological solutions that not only meet the needs of the users better but also expand their reach to underserved and high-risk communities. We also highlight the role of the bazaar model of development and complement that with quantitative and qualitative metrics for evaluating the solutions and convincing policymakers and other stakeholders in the value of this approach with empirical evidence.

قيم البحث

اقرأ أيضاً

Since the onset of the COVID-19s global spread we have been following the debate around contact tracing apps -- the tech-enabled response to the pandemic. As corporations, academics, governments, and civil society discuss the right way to implement t hese apps, we noticed recurring implicit assumptions. The proposed solutions are designed for a world where Internet access and smartphone ownership are a given, people are willing and able to install these apps, and those who receive notifications about potential exposure to the virus have access to testing and can isolate safely. In this work we challenge these assumptions. We not only show that there are not enough smartphones worldwide to reach required adoption thresholds but also highlight a broad lack of internet access, which affects certain groups more: the elderly, those with lower incomes, and those with limited ability to socially distance. Unfortunately, these are also the groups that are at the highest risks from COVID-19. We also report that the contact tracing apps that are already deployed on an opt-in basis show disappointing adoption levels. We warn about the potential consequences of over-extending the existing state and corporate surveillance powers. Finally, we describe a multitude of scenarios where contact tracing apps will not help regardless of access or policy. In this work we call for a comprehensive and equitable policy response that prioritizes the needs of the most vulnerable, protects human rights, and considers long term impact instead of focusing on technology-first fixes.
Digital contact tracing is a public health intervention. It should be integrated with local health policy, provide rapid and accurate notifications to exposed individuals, and encourage high app uptake and adherence to quarantine. Real-time monitorin g and evaluation of effectiveness of app-based contact tracing is key for improvement and public trust.
How to contain the spread of the COVID-19 virus is a major concern for most countries. As the situation continues to change, various countries are making efforts to reopen their economies by lifting some restrictions and enforcing new measures to pre vent the spread. In this work, we review some approaches that have been adopted to contain the COVID-19 virus such as contact tracing, clusters identification, movement restrictions, and status validation. Specifically, we classify available techniques based on some characteristics such as technology, architecture, trade-offs (privacy vs utility), and the phase of adoption. We present a novel approach for evaluating privacy using both qualitative and quantitative measures of privacy-utility assessment of contact tracing applications. In this new method, we classify utility at three (3) distinct levels: no privacy, 100% privacy, and at k where k is set by the system providing the utility or privacy.
The recent outbreak of COVID-19 has taken the world by surprise, forcing lockdowns and straining public health care systems. COVID-19 is known to be a highly infectious virus, and infected individuals do not initially exhibit symptoms, while some rem ain asymptomatic. Thus, a non-negligible fraction of the population can, at any given time, be a hidden source of transmissions. In response, many governments have shown great interest in smartphone contact tracing apps that help automate the difficult task of tracing all recent contacts of newly identified infected individuals. However, tracing apps have generated much discussion around their key attributes, including system architecture, data management, privacy, security, proximity estimation, and attack vulnerability. In this article, we provide the first comprehensive review of these much-discussed tracing app attributes. We also present an overview of many proposed tracing app examples, some of which have been deployed countrywide, and discuss the concerns users have reported regarding their usage. We close by outlining potential research directions for next-generation app design, which would facilitate improved tracing and security performance, as well as wide adoption by the population at large.
The global outbreak of COVID-19 has led to focus on efforts to manage and mitigate the continued spread of the disease. One of these efforts include the use of contact tracing to identify people who are at-risk of developing the disease through expos ure to an infected person. Historically, contact tracing has been primarily manual but given the exponential spread of the virus that causes COVID-19, there has been significant interest in the development and use of digital contact tracing solutions to supplement the work of human contact tracers. The collection and use of sensitive personal details by these applications has led to a number of concerns by the stakeholder groups with a vested interest in these solutions. We explore digital contact tracing solutions in detail and propose the use of a transparent reporting mechanism, FactSheets, to provide transparency of and support trust in these applications. We also provide an example FactSheet template with questions that are specific to the contact tracing application domain.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا