ترغب بنشر مسار تعليمي؟ اضغط هنا

Dark matter searches by the planned gamma-ray telescope GAMMA-400

282   0   0.0 ( 0 )
 نشر من قبل Andrey Egorov
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Our paper reviews the planned space-based gamma-ray telescope GAMMA-400 and evaluates in details its opportunities in the field of dark matter (DM) indirect searches. We estimated GAMMA-400 mean sensitivity to the diphoton DM annihilation cross section in the Galactic center for DM particle masses in the range of 1-500 GeV. We obtained the sensitivity gain at least by 1.2-1.5 times (depending on DM particle mass) with respect to the expected constraints from 12 years of observations by Fermi-LAT for the case of Einasto DM density profile. The joint analysis of the data from both telescopes may yield the gain up to 1.8-2.3 times. Thus the sensitivity reaches the level of annihilation cross section $langle sigma v rangle_{gammagamma}(m_chi=100~mbox{GeV})approx 10^{-28}$ cm$^3$/s. This will allow us to test the hypothesized narrow lines predicted by specific DM models, particularly the recently proposed pseudo-Goldstone boson DM model. We also considered the decaying DM - in this case the joint analysis may yield the sensitivity gain up to 1.1-2.0 times reaching the level of DM lifetime $tau_{gamma u}(m_chi=100~mbox{GeV}) approx 2cdot 10^{29}$ s. We estimated the GAMMA-400 sensitivity to axion-like particle (ALP) parameters by a potential observation of the supernova explosion in the Local Group. This is very sensitive probe of ALPs reaching the level of ALP-photon coupling constant $g_{agamma} sim 10^{-13}~mbox{GeV}^{-1}$ for ALP masses $m_a lesssim 1$ neV. We also calculated the sensitivity to ALPs by constraining the modulations in the spectra of the Galactic gamma-ray pulsars due to possible ALP-photon conversion. GAMMA-400 is expected to be more sensitive than the CAST helioscope for ALP masses $m_a approx (1-10)$ neV reaching $g_{agamma}^{min} approx 2cdot 10^{-11}~mbox{GeV}^{-1}$. Other potentially interesting targets and candidates are briefly considered too.

قيم البحث

اقرأ أيضاً

The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma rays and cosmic-ray electrons + positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. The GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is ~0.01 deg (E{gamma} > 100 GeV), the energy resolution ~1% (E{gamma} > 10 GeV), and the proton rejection factor ~10E6. GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.
We investigated the detectability of Galactic subhalos with masses $(10^6-10^9)M_{odot}$ formed by annihilating WIMP dark matter by the planned GAMMA-400 gamma-ray telescope. The inner structure of dark matter subhalos and their distribution in the G alaxy were taken from corresponding simulations. We showed that the expected gamma-ray flux from subhalos strongly depends on WIMP mass and subhalo concentration, but less strongly depends on the subhalo mass. In an optimistic case we may expect the flux of 10-100 ph/year above 100 MeV from the closest and most massive subhalos, which would be detectable sources for GAMMA-400. However, resolving the inner structure of subhalos might be possible only by the joint analysis of the future GAMMA-400 data and data from other telescopes due to smallness of fluxes. Also we considered the recent subhalo candidates 3FGL J2212.5+0703 and J1924.8-1034 within the framework of our model. We concluded that it is very unlikely that these sources belong to the subhalo population.
We analyze the possibility that the HESS gamma-ray source at the Galactic Center could be explained as the secondary flux produced by annihilation of TeV Dark Matter (TeVDM) particles with locally enhanced density, in a region spatially compatible wi th the HESS observations themselves. We study the inner 100 pc considering (i) the extrapolation of several density profiles from state-of-the-art N-body + Hydrodynamics simulations of Milky Way-like galaxies, (ii) the DM spike induced by the black hole, and (iii) the DM particles scattering off by bulge stars. We show that in some cases the DM spike may provide the enhancement in the flux required to explain the cut-off in the HESS J1745-290 gamma-ray spectra as TeVDM. In other cases, it may helps to describe the spatial tail reported by HESS II at angular scales < 0.54 degrees towards Sgr A.
83 - Xilei Sun , Junguang Lu , Tao Hu 2011
The luminescent properties of CsI(Na) crystals are studied in this report. By using a TDS3054C oscilloscope with a sampling frequency of 5 GS/s, we find out that nuclear recoil signals are dominated by very fast light pulse with a decay time of ~20 n s, while {gamma}-ray signals have a decay time of ~600 ns. The wavelength of nuclear recoil and {gamma}-ray signals are also different. The study of n/{gamma} separation shows that the rejection factor can reach an order of 10-7 with signal efficiency more than 80% at an equivalent electron recoil energy of 20 keV or more. Such a property makes CsI(Na) an ideal candidate for dark matter searches.
We compare the measured angular cross-correlation between the Fermi-LAT gamma-ray sky and catalogues of extra-galactic objects with the expected signal induced by weakly interacting massive particle (WIMP) dark matter (DM). We include a detailed desc ription of the contribution of astrophysical gamma-ray emitters such as blazars, misaligned AGN and star forming galaxies, and perform a global fit to the measured cross-correlation. Five catalogues are considered: SDSS-DR6 quasars, 2MASS galaxies, NVSS radio galaxies, SDSS-DR8 Luminous Red Galaxies and SDSS-DR8 main galaxy sample. To model the cross-correlation signal we use the halo occupation distribution formalism to estimate the number of galaxies of a given catalogue in DM halos and their spatial correlation properties. We discuss uncertainties in the predicted cross-correlation signal arising from the DM clustering and WIMP microscopic properties, which set the DM gamma-ray emission. The use of different catalogues probing objects at different redshifts reduces significantly, though not completely, the degeneracy among the different gamma-ray components. We find that the presence of a significant WIMP DM signal is allowed by the data but not significantly preferred by the fit, although this is mainly due to a degeneracy with the misaligned AGN component. With modest substructure boost, the sensitivity of this method excludes thermal annihilation cross sections at 95% C.L. for WIMP masses up to few tens of GeV. Constraining the low-redshift properties of astrophysical populations with future data will further improve the sensitivity to DM.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا