ﻻ يوجد ملخص باللغة العربية
We compare the measured angular cross-correlation between the Fermi-LAT gamma-ray sky and catalogues of extra-galactic objects with the expected signal induced by weakly interacting massive particle (WIMP) dark matter (DM). We include a detailed description of the contribution of astrophysical gamma-ray emitters such as blazars, misaligned AGN and star forming galaxies, and perform a global fit to the measured cross-correlation. Five catalogues are considered: SDSS-DR6 quasars, 2MASS galaxies, NVSS radio galaxies, SDSS-DR8 Luminous Red Galaxies and SDSS-DR8 main galaxy sample. To model the cross-correlation signal we use the halo occupation distribution formalism to estimate the number of galaxies of a given catalogue in DM halos and their spatial correlation properties. We discuss uncertainties in the predicted cross-correlation signal arising from the DM clustering and WIMP microscopic properties, which set the DM gamma-ray emission. The use of different catalogues probing objects at different redshifts reduces significantly, though not completely, the degeneracy among the different gamma-ray components. We find that the presence of a significant WIMP DM signal is allowed by the data but not significantly preferred by the fit, although this is mainly due to a degeneracy with the misaligned AGN component. With modest substructure boost, the sensitivity of this method excludes thermal annihilation cross sections at 95% C.L. for WIMP masses up to few tens of GeV. Constraining the low-redshift properties of astrophysical populations with future data will further improve the sensitivity to DM.
The origin of the extragalactic $gamma$-ray background (EGB) has been debated for some time. { The EGB comprises the $gamma$-ray emission from resolved and unresolved extragalactic sources, such as blazars, star-forming galaxies and radio galaxies, a
Our paper reviews the planned space-based gamma-ray telescope GAMMA-400 and evaluates in details its opportunities in the field of dark matter (DM) indirect searches. We estimated GAMMA-400 mean sensitivity to the diphoton DM annihilation cross secti
If the dark matter is unstable, the decay of these particles throughout the universe and in the halo of the Milky Way could contribute significantly to the isotropic gamma-ray background (IGRB) as measured by Fermi. In this article, we calculate the
The isotropic diffuse $gamma$-ray background (IGRB) has been detected by various experiments and recently the Fermi-LAT Collaboration has precisely measured its spectrum in a wide energy range. The origin of the IGRB is still unclear and we show in t
The $gamma$-ray and neutrino emissions from dark matter (DM) annihilation in galaxy clusters are studied. After about one year operation of Fermi-LAT, several nearby clusters are reported with stringent upper limits of GeV $gamma$-ray emission. We us