ترغب بنشر مسار تعليمي؟ اضغط هنا

Scaling-up Distributed Processing of Data Streams for Machine Learning

67   0   0.0 ( 0 )
 نشر من قبل Waheed Bajwa
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Emerging applications of machine learning in numerous areas involve continuous gathering of and learning from streams of data. Real-time incorporation of streaming data into the learned models is essential for improved inference in these applications. Further, these applications often involve data that are either inherently gathered at geographically distributed entities or that are intentionally distributed across multiple machines for memory, computational, and/or privacy reasons. Training of models in this distributed, streaming setting requires solving stochastic optimization problems in a collaborative manner over communication links between the physical entities. When the streaming data rate is high compared to the processing capabilities of compute nodes and/or the rate of the communications links, this poses a challenging question: how can one best leverage the incoming data for distributed training under constraints on computing capabilities and/or communications rate? A large body of research has emerged in recent decades to tackle this and related problems. This paper reviews recently developed methods that focus on large-scale distributed stochastic optimization in the compute- and bandwidth-limited regime, with an emphasis on convergence analysis that explicitly accounts for the mismatch between computation, communication and streaming rates. In particular, it focuses on methods that solve: (i) distributed stochastic convex problems, and (ii) distributed principal component analysis, which is a nonconvex problem with geometric structure that permits global convergence. For such methods, the paper discusses recent advances in terms of distributed algorithmic designs when faced with high-rate streaming data. Further, it reviews guarantees underlying these methods, which show there exist regimes in which systems can learn from distributed, streaming data at order-optimal rates.

قيم البحث

اقرأ أيضاً

166 - Kevin Hsieh 2019
The usability and practicality of any machine learning (ML) applications are largely influenced by two critical but hard-to-attain factors: low latency and low cost. Unfortunately, achieving low latency and low cost is very challenging when ML depend s on real-world data that are highly distributed and rapidly growing (e.g., data collected by mobile phones and video cameras all over the world). Such real-world data pose many challenges in communication and computation. For example, when training data are distributed across data centers that span multiple continents, communication among data centers can easily overwhelm the limited wide-area network bandwidth, leading to prohibitively high latency and high cost. In this dissertation, we demonstrate that the latency and cost of ML on highly-distributed and rapidly-growing data can be improved by one to two orders of magnitude by designing ML systems that exploit the characteristics of ML algorithms, ML model structures, and ML training/serving data. We support this thesis statement with three contributions. First, we design a system that provides both low-latency and low-cost ML serving (inferencing) over large-scale and continuously-growing datasets, such as videos. Second, we build a system that makes ML training over geo-distributed datasets as fast as training within a single data center. Third, we present a first detailed study and a system-level solution on a fundamental and largely overlooked problem: ML training over non-IID (i.e., not independent and identically distributed) data partitions (e.g., facial images collected by cameras varies according to the demographics of each cameras location).
Distributed Machine Learning suffers from the bottleneck of synchronization to all-reduce workers updates. Previous works mainly consider better network topology, gradient compression, or stale updates to speed up communication and relieve the bottle neck. However, all these works ignore the importance of reducing the scale of synchronized elements and inevitable serial executed operators. To address the problem, our work proposes the Divide-and-Shuffle Synchronization(DS-Sync), which divides workers into several parallel groups and shuffles group members. DS-Sync only synchronizes the workers in the same group so that the scale of a group is much smaller. The shuffle of workers maintains the algorithms convergence speed, which is interpreted in theory. Comprehensive experiments also show the significant improvements in the latest and popular models like Bert, WideResnet, and DeepFM on challenging datasets.
We introduce a novel design for in-situ training of machine learning algorithms built into smart sensors, and illustrate distributed training scenarios using radio frequency (RF) spectrum sensors. Current RF sensors at the Edge lack the computational resources to support practical, in-situ training for intelligent signal classification. We propose a solution using Deepdelay Loop Reservoir Computing (DLR), a processing architecture that supports machine learning algorithms on resource-constrained edge-devices by leveraging delayloop reservoir computing in combination with innovative hardware. DLR delivers reductions in form factor, hardware complexity and latency, compared to the State-ofthe- Art (SoA) neural nets. We demonstrate DLR for two applications: RF Specific Emitter Identification (SEI) and wireless protocol recognition. DLR enables mobile edge platforms to authenticate and then track emitters with fast SEI retraining. Once delay loops separate the data classes, traditionally complex, power-hungry classification models are no longer needed for the learning process. Yet, even with simple classifiers such as Ridge Regression (RR), the complexity grows at least quadratically with the input size. DLR with a RR classifier exceeds the SoA accuracy, while further reducing power consumption by leveraging the architecture of parallel (split) loops. To authenticate mobile devices across large regions, DLR can be trained in a distributed fashion with very little additional processing and a small communication cost, all while maintaining accuracy. We illustrate how to merge locally trained DLR classifiers in use cases of interest.
Matrix-parametrized models, including multiclass logistic regression and sparse coding, are used in machine learning (ML) applications ranging from computer vision to computational biology. When these models are applied to large-scale ML problems sta rting at millions of samples and tens of thousands of classes, their parameter matrix can grow at an unexpected rate, resulting in high parameter synchronization costs that greatly slow down distributed learning. To address this issue, we propose a Sufficient Factor Broadcasting (SFB) computation model for efficient distributed learning of a large family of matrix-parameterized models, which share the following property: the parameter update computed on each data sample is a rank-1 matrix, i.e., the outer product of two sufficient factors (SFs). By broadcasting the SFs among worker machines and reconstructing the update matrices locally at each worker, SFB improves communication efficiency --- communication costs are linear in the parameter matrixs dimensions, rather than quadratic --- without affecting computational correctness. We present a theoretical convergence analysis of SFB, and empirically corroborate its efficiency on four different matrix-parametrized ML models.
Matrix-parametrized models, including multiclass logistic regression and sparse coding, are used in machine learning (ML) applications ranging from computer vision to computational biology. When these models are applied to large-scale ML problems sta rting at millions of samples and tens of thousands of classes, their parameter matrix can grow at an unexpected rate, resulting in high parameter synchronization costs that greatly slow down distributed learning. To address this issue, we propose a Sufficient Factor Broadcasting (SFB) computation model for efficient distributed learning of a large family of matrix-parameterized models, which share the following property: the parameter update computed on each data sample is a rank-1 matrix, i.e., the outer product of two sufficient factors (SFs). By broadcasting the SFs among worker machines and reconstructing the update matrices locally at each worker, SFB improves communication efficiency --- communication costs are linear in the parameter matrixs dimensions, rather than quadratic --- without affecting computational correctness. We present a theoretical convergence analysis of SFB, and empirically corroborate its efficiency on four different matrix-parametrized ML models.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا