ﻻ يوجد ملخص باللغة العربية
We continue our investigation into the nonlinear evolution of the Goldreich-Schubert-Fricke (GSF) instability in differentially rotating radiation zones. This instability may be a key player in transporting angular momentum in stars and giant planets, but its nonlinear evolution remains mostly unexplored. In a previous paper we considered the equatorial instability, whereas here we simulate the instability at a general latitude for the first time. We adopt a local Cartesian Boussinesq model in a modified shearing box for most of our simulations, but we also perform some simulations with stress-free, impenetrable, radial boundaries. We first revisit the linear instability and derive some new results, before studying its nonlinear evolution. The instability is found to behave very differently compared with its behaviour at the equator. In particular, here we observe the development of strong zonal jets (layering in the angular momentum), which can considerably enhance angular momentum transport, particularly in axisymmetric simulations. The jets are, in general, tilted with respect to the local gravity by an angle that corresponds initially with that of the linear modes, but which evolves with time and depends on the strength of the flow. The instability transports angular momentum much more efficiently (by several orders of magnitude) than it does at the equator, and we estimate that the GSF instability could contribute to the missing angular momentum transport required in both red giant and subgiant stars. It could also play a role in the long-term evolution of the solar tachocline and the atmospheric dynamics of hot Jupiters.
The mixing of a passive scalar like lithium, beryllium or temperature fluctuations due to the magnetic Tayler instability of a rotating axial pinch is considered. Our study is carried out within a Taylor-Couette setup for two rotation laws: quasi-Kep
The Kelvin-Helmholtz (KH) instability of a shear layer with an initially-uniform magnetic field in the direction of flow is studied in the framework of 2D incompressible magnetohydrodynamics with finite resistivity and viscosity using direct numerica
We present a theory of the nonlinear growth of zonal flows in magnetized plasma turbulence, by the mechanism of secondary instability. The theory is derived for general magnetic geometry, and is thus applicable to both tokamaks and stellarators. The
Transport of angular momentum is a long-standing problem in stellar physics which recently became more acute thanks to the observations of the space-borne mission emph{Kepler}. Indeed, the need for an efficient mechanism able to explain the rotation
We present numerical simulations, using two complementary setups, of rotating Boussinesq thermal convection in a three-dimensional Cartesian geometry with misaligned gravity and rotation vectors. This model represents a small region at a non-polar la