ﻻ يوجد ملخص باللغة العربية
For a finite group generated by involutions, the involution width is defined to be the minimal $kinmathbb{N}$ such that any group element can be written as a product of at most $k$ involutions. We show that the involution width of every non-abelian finite simple group is at most $4$. This result is sharp, as there are families with involution width precisely 4.
In this paper we measure how efficiently a finite simple group $G$ is generated by its elements of order $p$, where $p$ is a fixed prime. This measure, known as the $p$-width of $G$, is the minimal $kin mathbb{N}$ such that any $gin G$ can be written
Building on earlier results for regular maps and for orientably regular chiral maps, we classify the non-abelian finite simple groups arising as automorphism groups of maps in each of the 14 Graver-Watkins classes of edge-transitive maps.
Let $p$ be a fixed prime. For a finite group generated by elements of order $p$, the $p$-width is defined to be the minimal $kinmathbb{N}$ such that any group element can be written as a product of at most $k$ elements of order $p$. Let $A_{n}$ denot
For a finite group $G$, let $mathrm{diam}(G)$ denote the maximum diameter of a connected Cayley graph of $G$. A well-known conjecture of Babai states that $mathrm{diam}(G)$ is bounded by ${(log_{2} |G|)}^{O(1)}$ in case $G$ is a non-abelian finite si
All finite simple groups are determined with the property that every Galois orbit on conjugacy classes has size at most 4. From this we list all finite simple groups $G$ for which the normalized group of central units of the integral group ring ZG is an infinite cyclic group.